freak.cpp 29.2 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
//  freak.cpp
//
//  Copyright (C) 2011-2012  Signal processing laboratory 2, EPFL,
//  Kirell Benzi (kirell.benzi@epfl.ch),
//  Raphael Ortiz (raphael.ortiz@a3.epfl.ch)
//  Alexandre Alahi (alexandre.alahi@epfl.ch)
//  and Pierre Vandergheynst (pierre.vandergheynst@epfl.ch)
//
//  Redistribution and use in source and binary forms, with or without modification,
//  are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
//  This software is provided by the copyright holders and contributors "as is" and
//  any express or implied warranties, including, but not limited to, the implied
//  warranties of merchantability and fitness for a particular purpose are disclaimed.
//  In no event shall the Intel Corporation or contributors be liable for any direct,
//  indirect, incidental, special, exemplary, or consequential damages
//  (including, but not limited to, procurement of substitute goods or services;
//  loss of use, data, or profits; or business interruption) however caused
//  and on any theory of liability, whether in contract, strict liability,
//  or tort (including negligence or otherwise) arising in any way out of
//  the use of this software, even if advised of the possibility of such damage.

#include "precomp.hpp"
#include <fstream>
#include <stdlib.h>
#include <algorithm>
#include <iostream>
#include <bitset>
#include <sstream>
#include <algorithm>
#include <iomanip>
#include <string.h>

namespace cv
{

static const double FREAK_LOG2 = 0.693147180559945;
static const int FREAK_NB_ORIENTATION = 256;
static const int FREAK_NB_POINTS = 43;
static const int FREAK_SMALLEST_KP_SIZE = 7; // smallest size of keypoints
static const int FREAK_NB_SCALES = FREAK::NB_SCALES;
static const int FREAK_NB_PAIRS = FREAK::NB_PAIRS;
static const int FREAK_NB_ORIENPAIRS = FREAK::NB_ORIENPAIRS;

// default pairs
static const int FREAK_DEF_PAIRS[FREAK::NB_PAIRS] =
{
     404,431,818,511,181,52,311,874,774,543,719,230,417,205,11,
     560,149,265,39,306,165,857,250,8,61,15,55,717,44,412,
     592,134,761,695,660,782,625,487,549,516,271,665,762,392,178,
     796,773,31,672,845,548,794,677,654,241,831,225,238,849,83,
     691,484,826,707,122,517,583,731,328,339,571,475,394,472,580,
     381,137,93,380,327,619,729,808,218,213,459,141,806,341,95,
     382,568,124,750,193,749,706,843,79,199,317,329,768,198,100,
     466,613,78,562,783,689,136,838,94,142,164,679,219,419,366,
     418,423,77,89,523,259,683,312,555,20,470,684,123,458,453,833,
     72,113,253,108,313,25,153,648,411,607,618,128,305,232,301,84,
     56,264,371,46,407,360,38,99,176,710,114,578,66,372,653,
     129,359,424,159,821,10,323,393,5,340,891,9,790,47,0,175,346,
     236,26,172,147,574,561,32,294,429,724,755,398,787,288,299,
     769,565,767,722,757,224,465,723,498,467,235,127,802,446,233,
     544,482,800,318,16,532,801,441,554,173,60,530,713,469,30,
     212,630,899,170,266,799,88,49,512,399,23,500,107,524,90,
     194,143,135,192,206,345,148,71,119,101,563,870,158,254,214,
     276,464,332,725,188,385,24,476,40,231,620,171,258,67,109,
     844,244,187,388,701,690,50,7,850,479,48,522,22,154,12,659,
     736,655,577,737,830,811,174,21,237,335,353,234,53,270,62,
     182,45,177,245,812,673,355,556,612,166,204,54,248,365,226,
     242,452,700,685,573,14,842,481,468,781,564,416,179,405,35,
     819,608,624,367,98,643,448,2,460,676,440,240,130,146,184,
     185,430,65,807,377,82,121,708,239,310,138,596,730,575,477,
     851,797,247,27,85,586,307,779,326,494,856,324,827,96,748,
     13,397,125,688,702,92,293,716,277,140,112,4,80,855,839,1,
     413,347,584,493,289,696,19,751,379,76,73,115,6,590,183,734,
     197,483,217,344,330,400,186,243,587,220,780,200,793,246,824,
     41,735,579,81,703,322,760,720,139,480,490,91,814,813,163,
     152,488,763,263,425,410,576,120,319,668,150,160,302,491,515,
     260,145,428,97,251,395,272,252,18,106,358,854,485,144,550,
     131,133,378,68,102,104,58,361,275,209,697,582,338,742,589,
     325,408,229,28,304,191,189,110,126,486,211,547,533,70,215,
     670,249,36,581,389,605,331,518,442,822
};

// used to sort pairs during pairs selection
struct PairStat
{
    double mean;
    int idx;
};

struct sortMean
{
    bool operator()( const PairStat& a, const PairStat& b ) const
    {
        return a.mean < b.mean;
    }
};

void FREAK::buildPattern()
{
    if( patternScale == patternScale0 && nOctaves == nOctaves0 && !patternLookup.empty() )
        return;

    nOctaves0 = nOctaves;
    patternScale0 = patternScale;

    patternLookup.resize(FREAK_NB_SCALES*FREAK_NB_ORIENTATION*FREAK_NB_POINTS);
    double scaleStep = pow(2.0, (double)(nOctaves)/FREAK_NB_SCALES ); // 2 ^ ( (nOctaves-1) /nbScales)
    double scalingFactor, alpha, beta, theta = 0;

    // pattern definition, radius normalized to 1.0 (outer point position+sigma=1.0)
    const int n[8] = {6,6,6,6,6,6,6,1}; // number of points on each concentric circle (from outer to inner)
    const double bigR(2.0/3.0); // bigger radius
    const double smallR(2.0/24.0); // smaller radius
    const double unitSpace( (bigR-smallR)/21.0 ); // define spaces between concentric circles (from center to outer: 1,2,3,4,5,6)
    // radii of the concentric cirles (from outer to inner)
    const double radius[8] = {bigR, bigR-6*unitSpace, bigR-11*unitSpace, bigR-15*unitSpace, bigR-18*unitSpace, bigR-20*unitSpace, smallR, 0.0};
    // sigma of pattern points (each group of 6 points on a concentric cirle has the same sigma)
    const double sigma[8] = {radius[0]/2.0, radius[1]/2.0, radius[2]/2.0,
                             radius[3]/2.0, radius[4]/2.0, radius[5]/2.0,
                             radius[6]/2.0, radius[6]/2.0
                            };
    // fill the lookup table
    for( int scaleIdx=0; scaleIdx < FREAK_NB_SCALES; ++scaleIdx )
    {
        patternSizes[scaleIdx] = 0; // proper initialization
        scalingFactor = pow(scaleStep,scaleIdx); //scale of the pattern, scaleStep ^ scaleIdx

        for( int orientationIdx = 0; orientationIdx < FREAK_NB_ORIENTATION; ++orientationIdx )
        {
            theta = double(orientationIdx)* 2*CV_PI/double(FREAK_NB_ORIENTATION); // orientation of the pattern
            int pointIdx = 0;

            PatternPoint* patternLookupPtr = &patternLookup[0];
            for( size_t i = 0; i < 8; ++i )
            {
                for( int k = 0 ; k < n[i]; ++k )
                {
                    beta = CV_PI/n[i] * (i%2); // orientation offset so that groups of points on each circles are staggered
                    alpha = double(k)* 2*CV_PI/double(n[i])+beta+theta;

                    // add the point to the look-up table
                    PatternPoint& point = patternLookupPtr[ scaleIdx*FREAK_NB_ORIENTATION*FREAK_NB_POINTS+orientationIdx*FREAK_NB_POINTS+pointIdx ];
                    point.x = static_cast<float>(radius[i] * cos(alpha) * scalingFactor * patternScale);
                    point.y = static_cast<float>(radius[i] * sin(alpha) * scalingFactor * patternScale);
                    point.sigma = static_cast<float>(sigma[i] * scalingFactor * patternScale);

                    // adapt the sizeList if necessary
                    const int sizeMax = static_cast<int>(ceil((radius[i]+sigma[i])*scalingFactor*patternScale)) + 1;
                    if( patternSizes[scaleIdx] < sizeMax )
                        patternSizes[scaleIdx] = sizeMax;

                    ++pointIdx;
                }
            }
        }
    }

    // build the list of orientation pairs
    orientationPairs[0].i=0; orientationPairs[0].j=3; orientationPairs[1].i=1; orientationPairs[1].j=4; orientationPairs[2].i=2; orientationPairs[2].j=5;
    orientationPairs[3].i=0; orientationPairs[3].j=2; orientationPairs[4].i=1; orientationPairs[4].j=3; orientationPairs[5].i=2; orientationPairs[5].j=4;
    orientationPairs[6].i=3; orientationPairs[6].j=5; orientationPairs[7].i=4; orientationPairs[7].j=0; orientationPairs[8].i=5; orientationPairs[8].j=1;

    orientationPairs[9].i=6; orientationPairs[9].j=9; orientationPairs[10].i=7; orientationPairs[10].j=10; orientationPairs[11].i=8; orientationPairs[11].j=11;
    orientationPairs[12].i=6; orientationPairs[12].j=8; orientationPairs[13].i=7; orientationPairs[13].j=9; orientationPairs[14].i=8; orientationPairs[14].j=10;
    orientationPairs[15].i=9; orientationPairs[15].j=11; orientationPairs[16].i=10; orientationPairs[16].j=6; orientationPairs[17].i=11; orientationPairs[17].j=7;

    orientationPairs[18].i=12; orientationPairs[18].j=15; orientationPairs[19].i=13; orientationPairs[19].j=16; orientationPairs[20].i=14; orientationPairs[20].j=17;
    orientationPairs[21].i=12; orientationPairs[21].j=14; orientationPairs[22].i=13; orientationPairs[22].j=15; orientationPairs[23].i=14; orientationPairs[23].j=16;
    orientationPairs[24].i=15; orientationPairs[24].j=17; orientationPairs[25].i=16; orientationPairs[25].j=12; orientationPairs[26].i=17; orientationPairs[26].j=13;

    orientationPairs[27].i=18; orientationPairs[27].j=21; orientationPairs[28].i=19; orientationPairs[28].j=22; orientationPairs[29].i=20; orientationPairs[29].j=23;
    orientationPairs[30].i=18; orientationPairs[30].j=20; orientationPairs[31].i=19; orientationPairs[31].j=21; orientationPairs[32].i=20; orientationPairs[32].j=22;
    orientationPairs[33].i=21; orientationPairs[33].j=23; orientationPairs[34].i=22; orientationPairs[34].j=18; orientationPairs[35].i=23; orientationPairs[35].j=19;

    orientationPairs[36].i=24; orientationPairs[36].j=27; orientationPairs[37].i=25; orientationPairs[37].j=28; orientationPairs[38].i=26; orientationPairs[38].j=29;
    orientationPairs[39].i=30; orientationPairs[39].j=33; orientationPairs[40].i=31; orientationPairs[40].j=34; orientationPairs[41].i=32; orientationPairs[41].j=35;
    orientationPairs[42].i=36; orientationPairs[42].j=39; orientationPairs[43].i=37; orientationPairs[43].j=40; orientationPairs[44].i=38; orientationPairs[44].j=41;

    for( unsigned m = FREAK_NB_ORIENPAIRS; m--; )
    {
        const float dx = patternLookup[orientationPairs[m].i].x-patternLookup[orientationPairs[m].j].x;
        const float dy = patternLookup[orientationPairs[m].i].y-patternLookup[orientationPairs[m].j].y;
        const float norm_sq = (dx*dx+dy*dy);
        orientationPairs[m].weight_dx = int((dx/(norm_sq))*4096.0+0.5);
        orientationPairs[m].weight_dy = int((dy/(norm_sq))*4096.0+0.5);
    }

    // build the list of description pairs
    std::vector<DescriptionPair> allPairs;
    for( unsigned int i = 1; i < (unsigned int)FREAK_NB_POINTS; ++i )
    {
        // (generate all the pairs)
        for( unsigned int j = 0; (unsigned int)j < i; ++j )
        {
            DescriptionPair pair = {(uchar)i,(uchar)j};
            allPairs.push_back(pair);
        }
    }
    // Input vector provided
    if( !selectedPairs0.empty() )
    {
        if( (int)selectedPairs0.size() == FREAK_NB_PAIRS )
        {
            for( int i = 0; i < FREAK_NB_PAIRS; ++i )
                 descriptionPairs[i] = allPairs[selectedPairs0.at(i)];
        }
        else
        {
            CV_Error(CV_StsVecLengthErr, "Input vector does not match the required size");
        }
    }
    else // default selected pairs
    {
        for( int i = 0; i < FREAK_NB_PAIRS; ++i )
             descriptionPairs[i] = allPairs[FREAK_DEF_PAIRS[i]];
    }
}

void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const
{

    if( image.empty() )
        return;
    if( keypoints.empty() )
        return;

    ((FREAK*)this)->buildPattern();

    Mat imgIntegral;
    integral(image, imgIntegral);
    std::vector<int> kpScaleIdx(keypoints.size()); // used to save pattern scale index corresponding to each keypoints
    const std::vector<int>::iterator ScaleIdxBegin = kpScaleIdx.begin(); // used in std::vector erase function
    const std::vector<cv::KeyPoint>::iterator kpBegin = keypoints.begin(); // used in std::vector erase function
    const float sizeCst = static_cast<float>(FREAK_NB_SCALES/(FREAK_LOG2* nOctaves));
    uchar pointsValue[FREAK_NB_POINTS];
    int thetaIdx = 0;
    int direction0;
    int direction1;

    // compute the scale index corresponding to the keypoint size and remove keypoints close to the border
    if( scaleNormalized )
    {
        for( size_t k = keypoints.size(); k--; )
        {
            //Is k non-zero? If so, decrement it and continue"
            kpScaleIdx[k] = max( (int)(log(keypoints[k].size/FREAK_SMALLEST_KP_SIZE)*sizeCst+0.5) ,0);
            if( kpScaleIdx[k] >= FREAK_NB_SCALES )
                kpScaleIdx[k] = FREAK_NB_SCALES-1;

            if( keypoints[k].pt.x <= patternSizes[kpScaleIdx[k]] || //check if the description at this specific position and scale fits inside the image
                 keypoints[k].pt.y <= patternSizes[kpScaleIdx[k]] ||
                 keypoints[k].pt.x >= image.cols-patternSizes[kpScaleIdx[k]] ||
                 keypoints[k].pt.y >= image.rows-patternSizes[kpScaleIdx[k]]
               )
            {
                keypoints.erase(kpBegin+k);
                kpScaleIdx.erase(ScaleIdxBegin+k);
            }
        }
    }
    else
    {
        const int scIdx = max( (int)(1.0986122886681*sizeCst+0.5) ,0);
        for( size_t k = keypoints.size(); k--; )
        {
            kpScaleIdx[k] = scIdx; // equivalent to the formule when the scale is normalized with a constant size of keypoints[k].size=3*SMALLEST_KP_SIZE
            if( kpScaleIdx[k] >= FREAK_NB_SCALES )
            {
                kpScaleIdx[k] = FREAK_NB_SCALES-1;
            }
            if( keypoints[k].pt.x <= patternSizes[kpScaleIdx[k]] ||
                keypoints[k].pt.y <= patternSizes[kpScaleIdx[k]] ||
                keypoints[k].pt.x >= image.cols-patternSizes[kpScaleIdx[k]] ||
                keypoints[k].pt.y >= image.rows-patternSizes[kpScaleIdx[k]]
               )
            {
                keypoints.erase(kpBegin+k);
                kpScaleIdx.erase(ScaleIdxBegin+k);
            }
        }
    }

    // allocate descriptor memory, estimate orientations, extract descriptors
    if( !extAll )
    {
        // extract the best comparisons only
        descriptors = cv::Mat::zeros((int)keypoints.size(), FREAK_NB_PAIRS/8, CV_8U);
#if CV_SSE2
        __m128i* ptr= (__m128i*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]);
#else
        std::bitset<FREAK_NB_PAIRS>* ptr = (std::bitset<FREAK_NB_PAIRS>*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]);
#endif
        for( size_t k = keypoints.size(); k--; )
        {
            // estimate orientation (gradient)
            if( !orientationNormalized )
            {
                thetaIdx = 0; // assign 0° to all keypoints
                keypoints[k].angle = 0.0;
            }
            else
            {
                // get the points intensity value in the un-rotated pattern
                for( int i = FREAK_NB_POINTS; i--; )
                {
                    pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,keypoints[k].pt.y, kpScaleIdx[k], 0, i);
                }
                direction0 = 0;
                direction1 = 0;
                for( int m = 45; m--; )
                {
                    //iterate through the orientation pairs
                    const int delta = (pointsValue[ orientationPairs[m].i ]-pointsValue[ orientationPairs[m].j ]);
                    direction0 += delta*(orientationPairs[m].weight_dx)/2048;
                    direction1 += delta*(orientationPairs[m].weight_dy)/2048;
                }

                keypoints[k].angle = static_cast<float>(atan2((float)direction1,(float)direction0)*(180.0/CV_PI));//estimate orientation
                thetaIdx = int(FREAK_NB_ORIENTATION*keypoints[k].angle*(1/360.0)+0.5);
                if( thetaIdx < 0 )
                    thetaIdx += FREAK_NB_ORIENTATION;

                if( thetaIdx >= FREAK_NB_ORIENTATION )
                    thetaIdx -= FREAK_NB_ORIENTATION;
            }
            // extract descriptor at the computed orientation
            for( int i = FREAK_NB_POINTS; i--; )
            {
                pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,keypoints[k].pt.y, kpScaleIdx[k], thetaIdx, i);
            }
#if CV_SSE2
            // note that comparisons order is modified in each block (but first 128 comparisons remain globally the same-->does not affect the 128,384 bits segmanted matching strategy)
            int cnt = 0;
            for( int n = FREAK_NB_PAIRS/128; n-- ; )
            {
                __m128i result128 = _mm_setzero_si128();
                for( int m = 128/16; m--; cnt += 16 )
                {
                    __m128i operand1 = _mm_set_epi8(
                        pointsValue[descriptionPairs[cnt+0].i],
                        pointsValue[descriptionPairs[cnt+1].i],
                        pointsValue[descriptionPairs[cnt+2].i],
                        pointsValue[descriptionPairs[cnt+3].i],
                        pointsValue[descriptionPairs[cnt+4].i],
                        pointsValue[descriptionPairs[cnt+5].i],
                        pointsValue[descriptionPairs[cnt+6].i],
                        pointsValue[descriptionPairs[cnt+7].i],
                        pointsValue[descriptionPairs[cnt+8].i],
                        pointsValue[descriptionPairs[cnt+9].i],
                        pointsValue[descriptionPairs[cnt+10].i],
                        pointsValue[descriptionPairs[cnt+11].i],
                        pointsValue[descriptionPairs[cnt+12].i],
                        pointsValue[descriptionPairs[cnt+13].i],
                        pointsValue[descriptionPairs[cnt+14].i],
                        pointsValue[descriptionPairs[cnt+15].i]);

                    __m128i operand2 = _mm_set_epi8(
                        pointsValue[descriptionPairs[cnt+0].j],
                        pointsValue[descriptionPairs[cnt+1].j],
                        pointsValue[descriptionPairs[cnt+2].j],
                        pointsValue[descriptionPairs[cnt+3].j],
                        pointsValue[descriptionPairs[cnt+4].j],
                        pointsValue[descriptionPairs[cnt+5].j],
                        pointsValue[descriptionPairs[cnt+6].j],
                        pointsValue[descriptionPairs[cnt+7].j],
                        pointsValue[descriptionPairs[cnt+8].j],
                        pointsValue[descriptionPairs[cnt+9].j],
                        pointsValue[descriptionPairs[cnt+10].j],
                        pointsValue[descriptionPairs[cnt+11].j],
                        pointsValue[descriptionPairs[cnt+12].j],
                        pointsValue[descriptionPairs[cnt+13].j],
                        pointsValue[descriptionPairs[cnt+14].j],
                        pointsValue[descriptionPairs[cnt+15].j]);

                    __m128i workReg = _mm_min_epu8(operand1, operand2); // emulated "not less than" for 8-bit UNSIGNED integers
                    workReg = _mm_cmpeq_epi8(workReg, operand2);        // emulated "not less than" for 8-bit UNSIGNED integers

                    workReg = _mm_and_si128(_mm_set1_epi16(short(0x8080 >> m)), workReg); // merge the last 16 bits with the 128bits std::vector until full
                    result128 = _mm_or_si128(result128, workReg);
                }
                (*ptr) = result128;
                ++ptr;
            }
            ptr -= (FREAK_NB_PAIRS/128)*2;
#else
            // extracting descriptor preserving the order of SSE version
            int cnt = 0;
            for( int n = 7; n < FREAK_NB_PAIRS; n += 128)
            {
                for( int m = 8; m--; )
                {
                    int nm = n-m;
                    for(int kk = nm+15*8; kk >= nm; kk-=8, ++cnt)
                    {
                        ptr->set(kk, pointsValue[descriptionPairs[cnt].i] >= pointsValue[descriptionPairs[cnt].j]);
                    }
                }
            }
            --ptr;
#endif
        }
    }
    else // extract all possible comparisons for selection
    {
        descriptors = cv::Mat::zeros((int)keypoints.size(), 128, CV_8U);
        std::bitset<1024>* ptr = (std::bitset<1024>*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]);

        for( size_t k = keypoints.size(); k--; )
        {
            //estimate orientation (gradient)
            if( !orientationNormalized )
            {
                thetaIdx = 0;//assign 0° to all keypoints
                keypoints[k].angle = 0.0;
            }
            else
            {
                //get the points intensity value in the un-rotated pattern
                for( int i = FREAK_NB_POINTS;i--; )
                    pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,keypoints[k].pt.y, kpScaleIdx[k], 0, i);

                direction0 = 0;
                direction1 = 0;
                for( int m = 45; m--; )
                {
                    //iterate through the orientation pairs
                    const int delta = (pointsValue[ orientationPairs[m].i ]-pointsValue[ orientationPairs[m].j ]);
                    direction0 += delta*(orientationPairs[m].weight_dx)/2048;
                    direction1 += delta*(orientationPairs[m].weight_dy)/2048;
                }

                keypoints[k].angle = static_cast<float>(atan2((float)direction1,(float)direction0)*(180.0/CV_PI)); //estimate orientation
                thetaIdx = int(FREAK_NB_ORIENTATION*keypoints[k].angle*(1/360.0)+0.5);

                if( thetaIdx < 0 )
                    thetaIdx += FREAK_NB_ORIENTATION;

                if( thetaIdx >= FREAK_NB_ORIENTATION )
                    thetaIdx -= FREAK_NB_ORIENTATION;
            }
            // get the points intensity value in the rotated pattern
            for( int i = FREAK_NB_POINTS; i--; )
            {
                pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,
                                             keypoints[k].pt.y, kpScaleIdx[k], thetaIdx, i);
            }

            int cnt(0);
            for( int i = 1; i < FREAK_NB_POINTS; ++i )
            {
                //(generate all the pairs)
                for( int j = 0; j < i; ++j )
                {
                    ptr->set(cnt, pointsValue[i] >= pointsValue[j] );
                    ++cnt;
                }
            }
            --ptr;
        }
    }
}

// simply take average on a square patch, not even gaussian approx
uchar FREAK::meanIntensity( const cv::Mat& image, const cv::Mat& integral,
                            const float kp_x,
                            const float kp_y,
                            const unsigned int scale,
                            const unsigned int rot,
                            const unsigned int point) const
{
    // get point position in image
    const PatternPoint& FreakPoint = patternLookup[scale*FREAK_NB_ORIENTATION*FREAK_NB_POINTS + rot*FREAK_NB_POINTS + point];
    const float xf = FreakPoint.x+kp_x;
    const float yf = FreakPoint.y+kp_y;
    const int x = int(xf);
    const int y = int(yf);
    const int& imagecols = image.cols;

    // get the sigma:
    const float radius = FreakPoint.sigma;

    // calculate output:
    if( radius < 0.5 )
    {
        // interpolation multipliers:
        const int r_x = static_cast<int>((xf-x)*1024);
        const int r_y = static_cast<int>((yf-y)*1024);
        const int r_x_1 = (1024-r_x);
        const int r_y_1 = (1024-r_y);
        uchar* ptr = image.data+x+y*imagecols;
        unsigned int ret_val;
        // linear interpolation:
        ret_val = (r_x_1*r_y_1*int(*ptr));
        ptr++;
        ret_val += (r_x*r_y_1*int(*ptr));
        ptr += imagecols;
        ret_val += (r_x*r_y*int(*ptr));
        ptr--;
        ret_val += (r_x_1*r_y*int(*ptr));
        //return the rounded mean
        ret_val += 2 * 1024 * 1024;
        return static_cast<uchar>(ret_val / (4 * 1024 * 1024));
    }

    // expected case:

    // calculate borders
    const int x_left = int(xf-radius+0.5);
    const int y_top = int(yf-radius+0.5);
    const int x_right = int(xf+radius+1.5);//integral image is 1px wider
    const int y_bottom = int(yf+radius+1.5);//integral image is 1px higher
    int ret_val;

    ret_val = integral.at<int>(y_bottom,x_right);//bottom right corner
    ret_val -= integral.at<int>(y_bottom,x_left);
    ret_val += integral.at<int>(y_top,x_left);
    ret_val -= integral.at<int>(y_top,x_right);
    ret_val = ret_val/( (x_right-x_left)* (y_bottom-y_top) );
    //~ std::cout<<integral.step[1]<<std::endl;
    return static_cast<uchar>(ret_val);
}

// pair selection algorithm from a set of training images and corresponding keypoints
vector<int> FREAK::selectPairs(const std::vector<Mat>& images
                                        , std::vector<std::vector<KeyPoint> >& keypoints
                                        , const double corrTresh
                                        , bool verbose )
{
    extAll = true;
    // compute descriptors with all pairs
    Mat descriptors;

    if( verbose )
        std::cout << "Number of images: " << images.size() << std::endl;

    for( size_t i = 0;i < images.size(); ++i )
    {
        Mat descriptorsTmp;
        computeImpl(images[i],keypoints[i],descriptorsTmp);
        descriptors.push_back(descriptorsTmp);
    }

    if( verbose )
        std::cout << "number of keypoints: " << descriptors.rows << std::endl;

    //descriptor in floating point format (each bit is a float)
    Mat descriptorsFloat = Mat::zeros(descriptors.rows, 903, CV_32F);

    std::bitset<1024>* ptr = (std::bitset<1024>*) (descriptors.data+(descriptors.rows-1)*descriptors.step[0]);
    for( int m = descriptors.rows; m--; )
    {
        for( int n = 903; n--; )
        {
            if( ptr->test(n) == true )
                descriptorsFloat.at<float>(m,n)=1.0f;
        }
        --ptr;
    }

    std::vector<PairStat> pairStat;
    for( int n = 903; n--; )
    {
        // the higher the variance, the better --> mean = 0.5
        PairStat tmp = { fabs( mean(descriptorsFloat.col(n))[0]-0.5 ) ,n};
        pairStat.push_back(tmp);
    }

    std::sort( pairStat.begin(),pairStat.end(), sortMean() );

    std::vector<PairStat> bestPairs;
    for( int m = 0; m < 903; ++m )
    {
        if( verbose )
            std::cout << m << ":" << bestPairs.size() << " " << std::flush;
        double corrMax(0);

        for( size_t n = 0; n < bestPairs.size(); ++n )
        {
            int idxA = bestPairs[n].idx;
            int idxB = pairStat[m].idx;
            double corr(0);
            // compute correlation between 2 pairs
            corr = fabs(compareHist(descriptorsFloat.col(idxA), descriptorsFloat.col(idxB), CV_COMP_CORREL));

            if( corr > corrMax )
            {
                corrMax = corr;
                if( corrMax >= corrTresh )
                    break;
            }
        }

        if( corrMax < corrTresh/*0.7*/ )
            bestPairs.push_back(pairStat[m]);

        if( bestPairs.size() >= 512 )
        {
            if( verbose )
                std::cout << m << std::endl;
            break;
        }
    }

    std::vector<int> idxBestPairs;
    if( (int)bestPairs.size() >= FREAK_NB_PAIRS )
    {
        for( int i = 0; i < FREAK_NB_PAIRS; ++i )
            idxBestPairs.push_back(bestPairs[i].idx);
    }
    else
    {
        if( verbose )
            std::cout << "correlation threshold too small (restrictive)" << std::endl;
        CV_Error(CV_StsError, "correlation threshold too small (restrictive)");
    }
    extAll = false;
    return idxBestPairs;
}


/*
// create an image showing the brisk pattern
void FREAKImpl::drawPattern()
{
    Mat pattern = Mat::zeros(1000, 1000, CV_8UC3) + Scalar(255,255,255);
    int sFac = 500 / patternScale;
    for( int n = 0; n < kNB_POINTS; ++n )
    {
        PatternPoint& pt = patternLookup[n];
        circle(pattern, Point( pt.x*sFac,pt.y*sFac)+Point(500,500), pt.sigma*sFac, Scalar(0,0,255),2);
        // rectangle(pattern, Point( (pt.x-pt.sigma)*sFac,(pt.y-pt.sigma)*sFac)+Point(500,500), Point( (pt.x+pt.sigma)*sFac,(pt.y+pt.sigma)*sFac)+Point(500,500), Scalar(0,0,255),2);

        circle(pattern, Point( pt.x*sFac,pt.y*sFac)+Point(500,500), 1, Scalar(0,0,0),3);
        std::ostringstream oss;
        oss << n;
        putText( pattern, oss.str(), Point( pt.x*sFac,pt.y*sFac)+Point(500,500), FONT_HERSHEY_SIMPLEX,0.5, Scalar(0,0,0), 1);
    }
    imshow( "FreakDescriptorExtractor pattern", pattern );
    waitKey(0);
}
*/

// -------------------------------------------------
/* FREAK interface implementation */
FREAK::FREAK( bool _orientationNormalized, bool _scaleNormalized
            , float _patternScale, int _nOctaves, const std::vector<int>& _selectedPairs )
    : orientationNormalized(_orientationNormalized), scaleNormalized(_scaleNormalized),
      patternScale(_patternScale), nOctaves(_nOctaves), extAll(false),
      patternScale0(0.0), nOctaves0(0), selectedPairs0(_selectedPairs)
{
}

FREAK::~FREAK()
{
}

int FREAK::descriptorSize() const
{
    return FREAK_NB_PAIRS / 8; // descriptor length in bytes
}

int FREAK::descriptorType() const
{
    return CV_8U;
}

} // END NAMESPACE CV