optflowgf.cpp 21.4 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

//
// 2D dense optical flow algorithm from the following paper:
// Gunnar Farneback. "Two-Frame Motion Estimation Based on Polynomial Expansion".
// Proceedings of the 13th Scandinavian Conference on Image Analysis, Gothenburg, Sweden
//

namespace cv
{

static void
wester committed
55
FarnebackPolyExp( const Mat& src, Mat& dst, int n, double sigma )
wester committed
56
{
wester committed
57 58 59 60 61 62 63 64 65 66 67
    int k, x, y;

    assert( src.type() == CV_32FC1 );
    int width = src.cols;
    int height = src.rows;
    AutoBuffer<float> kbuf(n*6 + 3), _row((width + n*2)*3);
    float* g = kbuf + n;
    float* xg = g + n*2 + 1;
    float* xxg = xg + n*2 + 1;
    float *row = (float*)_row + n*3;

wester committed
68 69 70 71
    if( sigma < FLT_EPSILON )
        sigma = n*0.3;

    double s = 0.;
wester committed
72
    for( x = -n; x <= n; x++ )
wester committed
73 74 75 76 77 78
    {
        g[x] = (float)std::exp(-x*x/(2*sigma*sigma));
        s += g[x];
    }

    s = 1./s;
wester committed
79
    for( x = -n; x <= n; x++ )
wester committed
80 81 82 83 84 85
    {
        g[x] = (float)(g[x]*s);
        xg[x] = (float)(x*g[x]);
        xxg[x] = (float)(x*x*g[x]);
    }

wester committed
86
    Mat_<double> G = Mat_<double>::zeros(6, 6);
wester committed
87

wester committed
88 89
    for( y = -n; y <= n; y++ )
        for( x = -n; x <= n; x++ )
wester committed
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        {
            G(0,0) += g[y]*g[x];
            G(1,1) += g[y]*g[x]*x*x;
            G(3,3) += g[y]*g[x]*x*x*x*x;
            G(5,5) += g[y]*g[x]*x*x*y*y;
        }

    //G[0][0] = 1.;
    G(2,2) = G(0,3) = G(0,4) = G(3,0) = G(4,0) = G(1,1);
    G(4,4) = G(3,3);
    G(3,4) = G(4,3) = G(5,5);

    // invG:
    // [ x        e  e    ]
    // [    y             ]
    // [       y          ]
    // [ e        z       ]
    // [ e           z    ]
    // [                u ]
    Mat_<double> invG = G.inv(DECOMP_CHOLESKY);
wester committed
110
    double ig11 = invG(1,1), ig03 = invG(0,3), ig33 = invG(3,3), ig55 = invG(5,5);
wester committed
111 112 113 114 115 116

    dst.create( height, width, CV_32FC(5));

    for( y = 0; y < height; y++ )
    {
        float g0 = g[0], g1, g2;
wester committed
117 118
        float *srow0 = (float*)(src.data + src.step*y), *srow1 = 0;
        float *drow = (float*)(dst.data + dst.step*y);
wester committed
119 120 121 122 123 124 125 126 127 128 129

        // vertical part of convolution
        for( x = 0; x < width; x++ )
        {
            row[x*3] = srow0[x]*g0;
            row[x*3+1] = row[x*3+2] = 0.f;
        }

        for( k = 1; k <= n; k++ )
        {
            g0 = g[k]; g1 = xg[k]; g2 = xxg[k];
wester committed
130 131
            srow0 = (float*)(src.data + src.step*std::max(y-k,0));
            srow1 = (float*)(src.data + src.step*std::min(y+k,height-1));
wester committed
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

            for( x = 0; x < width; x++ )
            {
                float p = srow0[x] + srow1[x];
                float t0 = row[x*3] + g0*p;
                float t1 = row[x*3+1] + g1*(srow1[x] - srow0[x]);
                float t2 = row[x*3+2] + g2*p;

                row[x*3] = t0;
                row[x*3+1] = t1;
                row[x*3+2] = t2;
            }
        }

        // horizontal part of convolution
        for( x = 0; x < n*3; x++ )
        {
            row[-1-x] = row[2-x];
            row[width*3+x] = row[width*3+x-3];
        }

        for( x = 0; x < width; x++ )
        {
            g0 = g[0];
            // r1 ~ 1, r2 ~ x, r3 ~ y, r4 ~ x^2, r5 ~ y^2, r6 ~ xy
            double b1 = row[x*3]*g0, b2 = 0, b3 = row[x*3+1]*g0,
                b4 = 0, b5 = row[x*3+2]*g0, b6 = 0;

            for( k = 1; k <= n; k++ )
            {
                double tg = row[(x+k)*3] + row[(x-k)*3];
                g0 = g[k];
                b1 += tg*g0;
                b4 += tg*xxg[k];
                b2 += (row[(x+k)*3] - row[(x-k)*3])*xg[k];
                b3 += (row[(x+k)*3+1] + row[(x-k)*3+1])*g0;
                b6 += (row[(x+k)*3+1] - row[(x-k)*3+1])*xg[k];
                b5 += (row[(x+k)*3+2] + row[(x-k)*3+2])*g0;
            }

            // do not store r1
            drow[x*5+1] = (float)(b2*ig11);
            drow[x*5] = (float)(b3*ig11);
            drow[x*5+3] = (float)(b1*ig03 + b4*ig33);
            drow[x*5+2] = (float)(b1*ig03 + b5*ig33);
            drow[x*5+4] = (float)(b6*ig55);
        }
    }

    row -= n*3;
}


/*static void
FarnebackPolyExpPyr( const Mat& src0, Vector<Mat>& pyr, int maxlevel, int n, double sigma )
{
    Vector<Mat> imgpyr;
    buildPyramid( src0, imgpyr, maxlevel );

    for( int i = 0; i <= maxlevel; i++ )
        FarnebackPolyExp( imgpyr[i], pyr[i], n, sigma );
}*/


static void
FarnebackUpdateMatrices( const Mat& _R0, const Mat& _R1, const Mat& _flow, Mat& matM, int _y0, int _y1 )
{
    const int BORDER = 5;
    static const float border[BORDER] = {0.14f, 0.14f, 0.4472f, 0.4472f, 0.4472f};

    int x, y, width = _flow.cols, height = _flow.rows;
wester committed
203
    const float* R1 = (float*)_R1.data;
wester committed
204 205 206 207 208 209
    size_t step1 = _R1.step/sizeof(R1[0]);

    matM.create(height, width, CV_32FC(5));

    for( y = _y0; y < _y1; y++ )
    {
wester committed
210 211 212
        const float* flow = (float*)(_flow.data + y*_flow.step);
        const float* R0 = (float*)(_R0.data + y*_R0.step);
        float* M = (float*)(matM.data + y*matM.step);
wester committed
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307

        for( x = 0; x < width; x++ )
        {
            float dx = flow[x*2], dy = flow[x*2+1];
            float fx = x + dx, fy = y + dy;

#if 1
            int x1 = cvFloor(fx), y1 = cvFloor(fy);
            const float* ptr = R1 + y1*step1 + x1*5;
            float r2, r3, r4, r5, r6;

            fx -= x1; fy -= y1;

            if( (unsigned)x1 < (unsigned)(width-1) &&
                (unsigned)y1 < (unsigned)(height-1) )
            {
                float a00 = (1.f-fx)*(1.f-fy), a01 = fx*(1.f-fy),
                      a10 = (1.f-fx)*fy, a11 = fx*fy;

                r2 = a00*ptr[0] + a01*ptr[5] + a10*ptr[step1] + a11*ptr[step1+5];
                r3 = a00*ptr[1] + a01*ptr[6] + a10*ptr[step1+1] + a11*ptr[step1+6];
                r4 = a00*ptr[2] + a01*ptr[7] + a10*ptr[step1+2] + a11*ptr[step1+7];
                r5 = a00*ptr[3] + a01*ptr[8] + a10*ptr[step1+3] + a11*ptr[step1+8];
                r6 = a00*ptr[4] + a01*ptr[9] + a10*ptr[step1+4] + a11*ptr[step1+9];

                r4 = (R0[x*5+2] + r4)*0.5f;
                r5 = (R0[x*5+3] + r5)*0.5f;
                r6 = (R0[x*5+4] + r6)*0.25f;
            }
#else
            int x1 = cvRound(fx), y1 = cvRound(fy);
            const float* ptr = R1 + y1*step1 + x1*5;
            float r2, r3, r4, r5, r6;

            if( (unsigned)x1 < (unsigned)width &&
                (unsigned)y1 < (unsigned)height )
            {
                r2 = ptr[0];
                r3 = ptr[1];
                r4 = (R0[x*5+2] + ptr[2])*0.5f;
                r5 = (R0[x*5+3] + ptr[3])*0.5f;
                r6 = (R0[x*5+4] + ptr[4])*0.25f;
            }
#endif
            else
            {
                r2 = r3 = 0.f;
                r4 = R0[x*5+2];
                r5 = R0[x*5+3];
                r6 = R0[x*5+4]*0.5f;
            }

            r2 = (R0[x*5] - r2)*0.5f;
            r3 = (R0[x*5+1] - r3)*0.5f;

            r2 += r4*dy + r6*dx;
            r3 += r6*dy + r5*dx;

            if( (unsigned)(x - BORDER) >= (unsigned)(width - BORDER*2) ||
                (unsigned)(y - BORDER) >= (unsigned)(height - BORDER*2))
            {
                float scale = (x < BORDER ? border[x] : 1.f)*
                    (x >= width - BORDER ? border[width - x - 1] : 1.f)*
                    (y < BORDER ? border[y] : 1.f)*
                    (y >= height - BORDER ? border[height - y - 1] : 1.f);

                r2 *= scale; r3 *= scale; r4 *= scale;
                r5 *= scale; r6 *= scale;
            }

            M[x*5]   = r4*r4 + r6*r6; // G(1,1)
            M[x*5+1] = (r4 + r5)*r6;  // G(1,2)=G(2,1)
            M[x*5+2] = r5*r5 + r6*r6; // G(2,2)
            M[x*5+3] = r4*r2 + r6*r3; // h(1)
            M[x*5+4] = r6*r2 + r5*r3; // h(2)
        }
    }
}


static void
FarnebackUpdateFlow_Blur( const Mat& _R0, const Mat& _R1,
                          Mat& _flow, Mat& matM, int block_size,
                          bool update_matrices )
{
    int x, y, width = _flow.cols, height = _flow.rows;
    int m = block_size/2;
    int y0 = 0, y1;
    int min_update_stripe = std::max((1 << 10)/width, block_size);
    double scale = 1./(block_size*block_size);

    AutoBuffer<double> _vsum((width+m*2+2)*5);
    double* vsum = _vsum + (m+1)*5;

    // init vsum
wester committed
308
    const float* srow0 = (const float*)matM.data;
wester committed
309 310 311 312 313
    for( x = 0; x < width*5; x++ )
        vsum[x] = srow0[x]*(m+2);

    for( y = 1; y < m; y++ )
    {
wester committed
314
        srow0 = (float*)(matM.data + matM.step*std::min(y,height-1));
wester committed
315 316 317 318 319 320 321 322
        for( x = 0; x < width*5; x++ )
            vsum[x] += srow0[x];
    }

    // compute blur(G)*flow=blur(h)
    for( y = 0; y < height; y++ )
    {
        double g11, g12, g22, h1, h2;
wester committed
323
        float* flow = (float*)(_flow.data + _flow.step*y);
wester committed
324

wester committed
325 326
        srow0 = (const float*)(matM.data + matM.step*std::max(y-m-1,0));
        const float* srow1 = (const float*)(matM.data + matM.step*std::min(y+m,height-1));
wester committed
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

        // vertical blur
        for( x = 0; x < width*5; x++ )
            vsum[x] += srow1[x] - srow0[x];

        // update borders
        for( x = 0; x < (m+1)*5; x++ )
        {
            vsum[-1-x] = vsum[4-x];
            vsum[width*5+x] = vsum[width*5+x-5];
        }

        // init g** and h*
        g11 = vsum[0]*(m+2);
        g12 = vsum[1]*(m+2);
        g22 = vsum[2]*(m+2);
        h1 = vsum[3]*(m+2);
        h2 = vsum[4]*(m+2);

        for( x = 1; x < m; x++ )
        {
            g11 += vsum[x*5];
            g12 += vsum[x*5+1];
            g22 += vsum[x*5+2];
            h1 += vsum[x*5+3];
            h2 += vsum[x*5+4];
        }

        // horizontal blur
        for( x = 0; x < width; x++ )
        {
            g11 += vsum[(x+m)*5] - vsum[(x-m)*5 - 5];
            g12 += vsum[(x+m)*5 + 1] - vsum[(x-m)*5 - 4];
            g22 += vsum[(x+m)*5 + 2] - vsum[(x-m)*5 - 3];
            h1 += vsum[(x+m)*5 + 3] - vsum[(x-m)*5 - 2];
            h2 += vsum[(x+m)*5 + 4] - vsum[(x-m)*5 - 1];

            double g11_ = g11*scale;
            double g12_ = g12*scale;
            double g22_ = g22*scale;
            double h1_ = h1*scale;
            double h2_ = h2*scale;

            double idet = 1./(g11_*g22_ - g12_*g12_+1e-3);

            flow[x*2] = (float)((g11_*h2_-g12_*h1_)*idet);
            flow[x*2+1] = (float)((g22_*h1_-g12_*h2_)*idet);
        }

        y1 = y == height - 1 ? height : y - block_size;
        if( update_matrices && (y1 == height || y1 >= y0 + min_update_stripe) )
        {
            FarnebackUpdateMatrices( _R0, _R1, _flow, matM, y0, y1 );
            y0 = y1;
        }
    }
}


static void
FarnebackUpdateFlow_GaussianBlur( const Mat& _R0, const Mat& _R1,
                                  Mat& _flow, Mat& matM, int block_size,
                                  bool update_matrices )
{
    int x, y, i, width = _flow.cols, height = _flow.rows;
    int m = block_size/2;
    int y0 = 0, y1;
    int min_update_stripe = std::max((1 << 10)/width, block_size);
    double sigma = m*0.3, s = 1;

    AutoBuffer<float> _vsum((width+m*2+2)*5 + 16), _hsum(width*5 + 16);
wester committed
398 399
    AutoBuffer<float, 4096> _kernel((m+1)*5 + 16);
    AutoBuffer<float*, 1024> _srow(m*2+1);
wester committed
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
    float *vsum = alignPtr((float*)_vsum + (m+1)*5, 16), *hsum = alignPtr((float*)_hsum, 16);
    float* kernel = (float*)_kernel;
    const float** srow = (const float**)&_srow[0];
    kernel[0] = (float)s;

    for( i = 1; i <= m; i++ )
    {
        float t = (float)std::exp(-i*i/(2*sigma*sigma) );
        kernel[i] = t;
        s += t*2;
    }

    s = 1./s;
    for( i = 0; i <= m; i++ )
        kernel[i] = (float)(kernel[i]*s);

#if CV_SSE2
    float* simd_kernel = alignPtr(kernel + m+1, 16);
    volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE);
    if( useSIMD )
    {
        for( i = 0; i <= m; i++ )
            _mm_store_ps(simd_kernel + i*4, _mm_set1_ps(kernel[i]));
    }
#endif

    // compute blur(G)*flow=blur(h)
    for( y = 0; y < height; y++ )
    {
        double g11, g12, g22, h1, h2;
wester committed
430
        float* flow = (float*)(_flow.data + _flow.step*y);
wester committed
431 432 433 434

        // vertical blur
        for( i = 0; i <= m; i++ )
        {
wester committed
435 436
            srow[m-i] = (const float*)(matM.data + matM.step*std::max(y-i,0));
            srow[m+i] = (const float*)(matM.data + matM.step*std::min(y+i,height-1));
wester committed
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
        }

        x = 0;
#if CV_SSE2
        if( useSIMD )
        {
            for( ; x <= width*5 - 16; x += 16 )
            {
                const float *sptr0 = srow[m], *sptr1;
                __m128 g4 = _mm_load_ps(simd_kernel);
                __m128 s0, s1, s2, s3;
                s0 = _mm_mul_ps(_mm_loadu_ps(sptr0 + x), g4);
                s1 = _mm_mul_ps(_mm_loadu_ps(sptr0 + x + 4), g4);
                s2 = _mm_mul_ps(_mm_loadu_ps(sptr0 + x + 8), g4);
                s3 = _mm_mul_ps(_mm_loadu_ps(sptr0 + x + 12), g4);

                for( i = 1; i <= m; i++ )
                {
                    __m128 x0, x1;
                    sptr0 = srow[m+i], sptr1 = srow[m-i];
                    g4 = _mm_load_ps(simd_kernel + i*4);
                    x0 = _mm_add_ps(_mm_loadu_ps(sptr0 + x), _mm_loadu_ps(sptr1 + x));
                    x1 = _mm_add_ps(_mm_loadu_ps(sptr0 + x + 4), _mm_loadu_ps(sptr1 + x + 4));
                    s0 = _mm_add_ps(s0, _mm_mul_ps(x0, g4));
                    s1 = _mm_add_ps(s1, _mm_mul_ps(x1, g4));
                    x0 = _mm_add_ps(_mm_loadu_ps(sptr0 + x + 8), _mm_loadu_ps(sptr1 + x + 8));
                    x1 = _mm_add_ps(_mm_loadu_ps(sptr0 + x + 12), _mm_loadu_ps(sptr1 + x + 12));
                    s2 = _mm_add_ps(s2, _mm_mul_ps(x0, g4));
                    s3 = _mm_add_ps(s3, _mm_mul_ps(x1, g4));
                }

                _mm_store_ps(vsum + x, s0);
                _mm_store_ps(vsum + x + 4, s1);
                _mm_store_ps(vsum + x + 8, s2);
                _mm_store_ps(vsum + x + 12, s3);
            }

            for( ; x <= width*5 - 4; x += 4 )
            {
                const float *sptr0 = srow[m], *sptr1;
                __m128 g4 = _mm_load_ps(simd_kernel);
                __m128 s0 = _mm_mul_ps(_mm_loadu_ps(sptr0 + x), g4);

                for( i = 1; i <= m; i++ )
                {
                    sptr0 = srow[m+i], sptr1 = srow[m-i];
                    g4 = _mm_load_ps(simd_kernel + i*4);
                    __m128 x0 = _mm_add_ps(_mm_loadu_ps(sptr0 + x), _mm_loadu_ps(sptr1 + x));
                    s0 = _mm_add_ps(s0, _mm_mul_ps(x0, g4));
                }
                _mm_store_ps(vsum + x, s0);
            }
        }
#endif
        for( ; x < width*5; x++ )
        {
            float s0 = srow[m][x]*kernel[0];
            for( i = 1; i <= m; i++ )
                s0 += (srow[m+i][x] + srow[m-i][x])*kernel[i];
            vsum[x] = s0;
        }

        // update borders
        for( x = 0; x < m*5; x++ )
        {
            vsum[-1-x] = vsum[4-x];
            vsum[width*5+x] = vsum[width*5+x-5];
        }

        // horizontal blur
        x = 0;
#if CV_SSE2
        if( useSIMD )
        {
            for( ; x <= width*5 - 8; x += 8 )
            {
                __m128 g4 = _mm_load_ps(simd_kernel);
                __m128 s0 = _mm_mul_ps(_mm_loadu_ps(vsum + x), g4);
                __m128 s1 = _mm_mul_ps(_mm_loadu_ps(vsum + x + 4), g4);

                for( i = 1; i <= m; i++ )
                {
                    g4 = _mm_load_ps(simd_kernel + i*4);
                    __m128 x0 = _mm_add_ps(_mm_loadu_ps(vsum + x - i*5),
                                           _mm_loadu_ps(vsum + x + i*5));
                    __m128 x1 = _mm_add_ps(_mm_loadu_ps(vsum + x - i*5 + 4),
                                           _mm_loadu_ps(vsum + x + i*5 + 4));
                    s0 = _mm_add_ps(s0, _mm_mul_ps(x0, g4));
                    s1 = _mm_add_ps(s1, _mm_mul_ps(x1, g4));
                }

                _mm_store_ps(hsum + x, s0);
                _mm_store_ps(hsum + x + 4, s1);
            }
        }
#endif
        for( ; x < width*5; x++ )
        {
            float sum = vsum[x]*kernel[0];
            for( i = 1; i <= m; i++ )
                sum += kernel[i]*(vsum[x - i*5] + vsum[x + i*5]);
            hsum[x] = sum;
        }

        for( x = 0; x < width; x++ )
        {
            g11 = hsum[x*5];
            g12 = hsum[x*5+1];
            g22 = hsum[x*5+2];
            h1 = hsum[x*5+3];
            h2 = hsum[x*5+4];

            double idet = 1./(g11*g22 - g12*g12 + 1e-3);

            flow[x*2] = (float)((g11*h2-g12*h1)*idet);
            flow[x*2+1] = (float)((g22*h1-g12*h2)*idet);
        }

        y1 = y == height - 1 ? height : y - block_size;
        if( update_matrices && (y1 == height || y1 >= y0 + min_update_stripe) )
        {
            FarnebackUpdateMatrices( _R0, _R1, _flow, matM, y0, y1 );
            y0 = y1;
        }
    }
}

}

a  
Kai Westerkamp committed
566
void cv::calcOpticalFlowFarneback( InputArray _prev0, InputArray _next0,
wester committed
567
                               OutputArray _flow0, double pyr_scale, int levels, int winsize,
a  
Kai Westerkamp committed
568
                               int iterations, int poly_n, double poly_sigma, int flags )
wester committed
569 570 571 572 573 574 575 576 577 578
{
    Mat prev0 = _prev0.getMat(), next0 = _next0.getMat();
    const int min_size = 32;
    const Mat* img[2] = { &prev0, &next0 };

    int i, k;
    double scale;
    Mat prevFlow, flow, fimg;

    CV_Assert( prev0.size() == next0.size() && prev0.channels() == next0.channels() &&
a  
Kai Westerkamp committed
579
        prev0.channels() == 1 && pyr_scale < 1 );
wester committed
580 581 582 583 584
    _flow0.create( prev0.size(), CV_32FC2 );
    Mat flow0 = _flow0.getMat();

    for( k = 0, scale = 1; k < levels; k++ )
    {
a  
Kai Westerkamp committed
585
        scale *= pyr_scale;
wester committed
586 587 588 589 590 591 592 593 594
        if( prev0.cols*scale < min_size || prev0.rows*scale < min_size )
            break;
    }

    levels = k;

    for( k = levels; k >= 0; k-- )
    {
        for( i = 0, scale = 1; i < k; i++ )
a  
Kai Westerkamp committed
595
            scale *= pyr_scale;
wester committed
596 597 598 599 600 601 602 603 604 605 606 607 608

        double sigma = (1./scale-1)*0.5;
        int smooth_sz = cvRound(sigma*5)|1;
        smooth_sz = std::max(smooth_sz, 3);

        int width = cvRound(prev0.cols*scale);
        int height = cvRound(prev0.rows*scale);

        if( k > 0 )
            flow.create( height, width, CV_32FC2 );
        else
            flow = flow0;

wester committed
609
        if( !prevFlow.data )
wester committed
610
        {
a  
Kai Westerkamp committed
611
            if( flags & OPTFLOW_USE_INITIAL_FLOW )
wester committed
612 613 614 615 616 617 618 619 620 621
            {
                resize( flow0, flow, Size(width, height), 0, 0, INTER_AREA );
                flow *= scale;
            }
            else
                flow = Mat::zeros( height, width, CV_32FC2 );
        }
        else
        {
            resize( prevFlow, flow, Size(width, height), 0, 0, INTER_LINEAR );
a  
Kai Westerkamp committed
622
            flow *= 1./pyr_scale;
wester committed
623 624 625 626 627 628 629
        }

        Mat R[2], I, M;
        for( i = 0; i < 2; i++ )
        {
            img[i]->convertTo(fimg, CV_32F);
            GaussianBlur(fimg, fimg, Size(smooth_sz, smooth_sz), sigma, sigma);
wester committed
630
            resize( fimg, I, Size(width, height), CV_INTER_LINEAR );
a  
Kai Westerkamp committed
631
            FarnebackPolyExp( I, R[i], poly_n, poly_sigma );
wester committed
632 633 634 635
        }

        FarnebackUpdateMatrices( R[0], R[1], flow, M, 0, flow.rows );

a  
Kai Westerkamp committed
636
        for( i = 0; i < iterations; i++ )
wester committed
637
        {
a  
Kai Westerkamp committed
638 639
            if( flags & OPTFLOW_FARNEBACK_GAUSSIAN )
                FarnebackUpdateFlow_GaussianBlur( R[0], R[1], flow, M, winsize, i < iterations - 1 );
wester committed
640
            else
a  
Kai Westerkamp committed
641
                FarnebackUpdateFlow_Blur( R[0], R[1], flow, M, winsize, i < iterations - 1 );
wester committed
642 643 644 645 646
        }

        prevFlow = flow;
    }
}
wester committed
647 648 649 650 651 652 653 654 655 656 657 658 659 660


CV_IMPL void cvCalcOpticalFlowFarneback(
            const CvArr* _prev, const CvArr* _next,
            CvArr* _flow, double pyr_scale, int levels,
            int winsize, int iterations, int poly_n,
            double poly_sigma, int flags )
{
    cv::Mat prev = cv::cvarrToMat(_prev), next = cv::cvarrToMat(_next);
    cv::Mat flow = cv::cvarrToMat(_flow);
    CV_Assert( flow.size() == prev.size() && flow.type() == CV_32FC2 );
    cv::calcOpticalFlowFarneback( prev, next, flow, pyr_scale, levels,
        winsize, iterations, poly_n, poly_sigma, flags );
}