test_blend.cpp 6.84 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
//    Nathan, liujun@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include <iomanip>

using namespace cv;
using namespace cv::ocl;
using namespace testing;
using namespace std;

template <typename T>
static void blendLinearGold(const Mat &img1, const Mat &img2,
                            const Mat &weights1, const Mat &weights2,
                            Mat &result_gold)
{
    CV_Assert(img1.size() == img2.size() && img1.type() == img2.type());
    CV_Assert(weights1.size() == weights2.size() && weights1.size() == img1.size() &&
              weights1.type() == CV_32FC1 && weights2.type() == CV_32FC1);

    result_gold.create(img1.size(), img1.type());

    int cn = img1.channels();
    int step1 = img1.cols * img1.channels();

    for (int y = 0; y < img1.rows; ++y)
    {
        const float * const weights1_row = weights1.ptr<float>(y);
        const float * const weights2_row = weights2.ptr<float>(y);
        const T * const img1_row = img1.ptr<T>(y);
        const T * const img2_row = img2.ptr<T>(y);
        T * const result_gold_row = result_gold.ptr<T>(y);

        for (int x = 0; x < step1; ++x)
        {
            int x1 = x / cn;
            float w1 = weights1_row[x1], w2 = weights2_row[x1];
            result_gold_row[x] = saturate_cast<T>(((float)img1_row[x] * w1
                                                 + (float)img2_row[x] * w2) / (w1 + w2 + 1e-5f));
        }
    }
}

PARAM_TEST_CASE(Blend, MatDepth, int, bool)
{
    int depth, channels;
    bool useRoi;

    Mat src1, src2, weights1, weights2, dst;
    Mat src1_roi, src2_roi, weights1_roi, weights2_roi, dst_roi;
    oclMat gsrc1, gsrc2, gweights1, gweights2, gdst, gst;
    oclMat gsrc1_roi, gsrc2_roi, gweights1_roi, gweights2_roi, gdst_roi;

    virtual void SetUp()
    {
        depth = GET_PARAM(0);
        channels = GET_PARAM(1);
        useRoi = GET_PARAM(2);
    }

    void random_roi()
    {
        const int type = CV_MAKE_TYPE(depth, channels);

        const double upValue = 256;
        const double sumMinValue = 0.01; // we don't want to divide by "zero"

        Size roiSize = randomSize(1, 20);
        Border src1Border = randomBorder(0, useRoi ? MAX_VALUE : 0);
        randomSubMat(src1, src1_roi, roiSize, src1Border, type, -upValue, upValue);

        Border src2Border = randomBorder(0, useRoi ? MAX_VALUE : 0);
        randomSubMat(src2, src2_roi, roiSize, src2Border, type, -upValue, upValue);

        Border weights1Border = randomBorder(0, useRoi ? MAX_VALUE : 0);
        randomSubMat(weights1, weights1_roi, roiSize, weights1Border, CV_32FC1, -upValue, upValue);

        Border weights2Border = randomBorder(0, useRoi ? MAX_VALUE : 0);
        randomSubMat(weights2, weights2_roi, roiSize, weights2Border, CV_32FC1, sumMinValue, upValue); // fill it as a (w1 + w12)

        weights2_roi = weights2_roi - weights1_roi;
        // check that weights2_roi is still a part of weights2 (not a new matrix)
        CV_Assert(checkNorm(weights2_roi,
            weights2(Rect(weights2Border.lef, weights2Border.top, roiSize.width, roiSize.height))) < 1e-6);

        Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
        randomSubMat(dst, dst_roi, roiSize, dstBorder, type, 5, 16);

        generateOclMat(gsrc1, gsrc1_roi, src1, roiSize, src1Border);
        generateOclMat(gsrc2, gsrc2_roi, src2, roiSize, src2Border);
        generateOclMat(gweights1, gweights1_roi, weights1, roiSize, weights1Border);
        generateOclMat(gweights2, gweights2_roi, weights2, roiSize, weights2Border);
        generateOclMat(gdst, gdst_roi, dst, roiSize, dstBorder);
    }

    void Near(double eps = 0.0)
    {
        Mat whole, roi;
        gdst.download(whole);
        gdst_roi.download(roi);

        EXPECT_MAT_NEAR(dst, whole, eps);
        EXPECT_MAT_NEAR(dst_roi, roi, eps);
    }
};

typedef void (*blendLinearFunc)(const cv::Mat &img1, const cv::Mat &img2, const cv::Mat &weights1, const cv::Mat &weights2, cv::Mat &result_gold);

OCL_TEST_P(Blend, Accuracy)
{
    for (int i = 0; i < LOOP_TIMES; ++i)
    {
        random_roi();

        cv::ocl::blendLinear(gsrc1_roi, gsrc2_roi, gweights1_roi, gweights2_roi, gdst_roi);

        static blendLinearFunc funcs[] = {
            blendLinearGold<uchar>,
            blendLinearGold<schar>,
            blendLinearGold<ushort>,
            blendLinearGold<short>,
            blendLinearGold<int>,
            blendLinearGold<float>,
        };

        blendLinearFunc func = funcs[depth];
        func(src1_roi, src2_roi, weights1_roi, weights2_roi, dst_roi);

        Near(depth <= CV_32S ? 1.0 : 0.2);
    }
}

INSTANTIATE_TEST_CASE_P(OCL_ImgProc, Blend,
                        Combine(testing::Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F),
                                testing::Range(1, 5), Bool()));