optical_flow.cpp 9.64 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::gpu;
using namespace std;

#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)

void cv::gpu::BroxOpticalFlow::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::interpolateFrames(const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::createOpticalFlowNeedleMap(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }

#else

namespace
{
    size_t getBufSize(const NCVBroxOpticalFlowDescriptor& desc, const NCVMatrix<Ncv32f>& frame0, const NCVMatrix<Ncv32f>& frame1,
                      NCVMatrix<Ncv32f>& u, NCVMatrix<Ncv32f>& v, const cudaDeviceProp& devProp)
    {
        NCVMemStackAllocator gpuCounter(static_cast<Ncv32u>(devProp.textureAlignment));

        ncvSafeCall( NCVBroxOpticalFlow(desc, gpuCounter, frame0, frame1, u, v, 0) );

        return gpuCounter.maxSize();
    }
}

namespace
{
    static void outputHandler(const std::string &msg) { CV_Error(CV_GpuApiCallError, msg.c_str()); }
}

void cv::gpu::BroxOpticalFlow::operator ()(const GpuMat& frame0, const GpuMat& frame1, GpuMat& u, GpuMat& v, Stream& s)
{
    ncvSetDebugOutputHandler(outputHandler);

    CV_Assert(frame0.type() == CV_32FC1);
    CV_Assert(frame1.size() == frame0.size() && frame1.type() == frame0.type());

    u.create(frame0.size(), CV_32FC1);
    v.create(frame0.size(), CV_32FC1);

    cudaDeviceProp devProp;
    cudaSafeCall( cudaGetDeviceProperties(&devProp, getDevice()) );

    NCVBroxOpticalFlowDescriptor desc;

    desc.alpha = alpha;
    desc.gamma = gamma;
    desc.scale_factor = scale_factor;
    desc.number_of_inner_iterations = inner_iterations;
    desc.number_of_outer_iterations = outer_iterations;
    desc.number_of_solver_iterations = solver_iterations;

    NCVMemSegment frame0MemSeg;
    frame0MemSeg.begin.memtype = NCVMemoryTypeDevice;
    frame0MemSeg.begin.ptr = const_cast<uchar*>(frame0.data);
    frame0MemSeg.size = frame0.step * frame0.rows;

    NCVMemSegment frame1MemSeg;
    frame1MemSeg.begin.memtype = NCVMemoryTypeDevice;
    frame1MemSeg.begin.ptr = const_cast<uchar*>(frame1.data);
    frame1MemSeg.size = frame1.step * frame1.rows;

    NCVMemSegment uMemSeg;
    uMemSeg.begin.memtype = NCVMemoryTypeDevice;
    uMemSeg.begin.ptr = u.ptr();
    uMemSeg.size = u.step * u.rows;

    NCVMemSegment vMemSeg;
    vMemSeg.begin.memtype = NCVMemoryTypeDevice;
    vMemSeg.begin.ptr = v.ptr();
    vMemSeg.size = v.step * v.rows;

    NCVMatrixReuse<Ncv32f> frame0Mat(frame0MemSeg, static_cast<Ncv32u>(devProp.textureAlignment), frame0.cols, frame0.rows, static_cast<Ncv32u>(frame0.step));
    NCVMatrixReuse<Ncv32f> frame1Mat(frame1MemSeg, static_cast<Ncv32u>(devProp.textureAlignment), frame1.cols, frame1.rows, static_cast<Ncv32u>(frame1.step));
    NCVMatrixReuse<Ncv32f> uMat(uMemSeg, static_cast<Ncv32u>(devProp.textureAlignment), u.cols, u.rows, static_cast<Ncv32u>(u.step));
    NCVMatrixReuse<Ncv32f> vMat(vMemSeg, static_cast<Ncv32u>(devProp.textureAlignment), v.cols, v.rows, static_cast<Ncv32u>(v.step));

    cudaStream_t stream = StreamAccessor::getStream(s);

    size_t bufSize = getBufSize(desc, frame0Mat, frame1Mat, uMat, vMat, devProp);

    ensureSizeIsEnough(1, static_cast<int>(bufSize), CV_8UC1, buf);

    NCVMemStackAllocator gpuAllocator(NCVMemoryTypeDevice, bufSize, static_cast<Ncv32u>(devProp.textureAlignment), buf.ptr());

    ncvSafeCall( NCVBroxOpticalFlow(desc, gpuAllocator, frame0Mat, frame1Mat, uMat, vMat, stream) );
}

void cv::gpu::interpolateFrames(const GpuMat& frame0, const GpuMat& frame1, const GpuMat& fu, const GpuMat& fv, const GpuMat& bu, const GpuMat& bv,
                                float pos, GpuMat& newFrame, GpuMat& buf, Stream& s)
{
    CV_Assert(frame0.type() == CV_32FC1);
    CV_Assert(frame1.size() == frame0.size() && frame1.type() == frame0.type());
    CV_Assert(fu.size() == frame0.size() && fu.type() == frame0.type());
    CV_Assert(fv.size() == frame0.size() && fv.type() == frame0.type());
    CV_Assert(bu.size() == frame0.size() && bu.type() == frame0.type());
    CV_Assert(bv.size() == frame0.size() && bv.type() == frame0.type());

    newFrame.create(frame0.size(), frame0.type());

    buf.create(6 * frame0.rows, frame0.cols, CV_32FC1);
    buf.setTo(Scalar::all(0));

    // occlusion masks
    GpuMat occ0 = buf.rowRange(0 * frame0.rows, 1 * frame0.rows);
    GpuMat occ1 = buf.rowRange(1 * frame0.rows, 2 * frame0.rows);

    // interpolated forward flow
    GpuMat fui = buf.rowRange(2 * frame0.rows, 3 * frame0.rows);
    GpuMat fvi = buf.rowRange(3 * frame0.rows, 4 * frame0.rows);

    // interpolated backward flow
    GpuMat bui = buf.rowRange(4 * frame0.rows, 5 * frame0.rows);
    GpuMat bvi = buf.rowRange(5 * frame0.rows, 6 * frame0.rows);

    size_t step = frame0.step;

    CV_Assert(frame1.step == step && fu.step == step && fv.step == step && bu.step == step && bv.step == step && newFrame.step == step && buf.step == step);

    cudaStream_t stream = StreamAccessor::getStream(s);
    NppStStreamHandler h(stream);

    NppStInterpolationState state;

    state.size         = NcvSize32u(frame0.cols, frame0.rows);
    state.nStep        = static_cast<Ncv32u>(step);
    state.pSrcFrame0   = const_cast<Ncv32f*>(frame0.ptr<Ncv32f>());
    state.pSrcFrame1   = const_cast<Ncv32f*>(frame1.ptr<Ncv32f>());
    state.pFU          = const_cast<Ncv32f*>(fu.ptr<Ncv32f>());
    state.pFV          = const_cast<Ncv32f*>(fv.ptr<Ncv32f>());
    state.pBU          = const_cast<Ncv32f*>(bu.ptr<Ncv32f>());
    state.pBV          = const_cast<Ncv32f*>(bv.ptr<Ncv32f>());
    state.pos          = pos;
    state.pNewFrame    = newFrame.ptr<Ncv32f>();
    state.ppBuffers[0] = occ0.ptr<Ncv32f>();
    state.ppBuffers[1] = occ1.ptr<Ncv32f>();
    state.ppBuffers[2] = fui.ptr<Ncv32f>();
    state.ppBuffers[3] = fvi.ptr<Ncv32f>();
    state.ppBuffers[4] = bui.ptr<Ncv32f>();
    state.ppBuffers[5] = bvi.ptr<Ncv32f>();

    ncvSafeCall( nppiStInterpolateFrames(&state) );

    if (stream == 0)
        cudaSafeCall( cudaDeviceSynchronize() );
}

namespace cv { namespace gpu { namespace device
{
    namespace optical_flow
    {
        void NeedleMapAverage_gpu(PtrStepSzf u, PtrStepSzf v, PtrStepSzf u_avg, PtrStepSzf v_avg);
        void CreateOpticalFlowNeedleMap_gpu(PtrStepSzf u_avg, PtrStepSzf v_avg, float* vertex_buffer, float* color_data, float max_flow, float xscale, float yscale);
    }
}}}

void cv::gpu::createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors)
{
    using namespace cv::gpu::device::optical_flow;

    CV_Assert(u.type() == CV_32FC1);
    CV_Assert(v.type() == u.type() && v.size() == u.size());

    const int NEEDLE_MAP_SCALE = 16;

    const int x_needles = u.cols / NEEDLE_MAP_SCALE;
    const int y_needles = u.rows / NEEDLE_MAP_SCALE;

    GpuMat u_avg(y_needles, x_needles, CV_32FC1);
    GpuMat v_avg(y_needles, x_needles, CV_32FC1);

    NeedleMapAverage_gpu(u, v, u_avg, v_avg);

    const int NUM_VERTS_PER_ARROW = 6;

    const int num_arrows = x_needles * y_needles * NUM_VERTS_PER_ARROW;

    vertex.create(1, num_arrows, CV_32FC3);
    colors.create(1, num_arrows, CV_32FC3);

    colors.setTo(Scalar::all(1.0));

    double uMax, vMax;
    minMax(u_avg, 0, &uMax);
    minMax(v_avg, 0, &vMax);

    float max_flow = static_cast<float>(std::sqrt(uMax * uMax + vMax * vMax));

    CreateOpticalFlowNeedleMap_gpu(u_avg, v_avg, vertex.ptr<float>(), colors.ptr<float>(), max_flow, 1.0f / u.cols, 1.0f / u.rows);

    cvtColor(colors, colors, COLOR_HSV2RGB);
}

#endif /* HAVE_CUDA */