perf_stich.cpp 6.89 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
#include "perf_precomp.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/flann.hpp"
#include "opencv2/opencv_modules.hpp"

using namespace std;
using namespace cv;
using namespace perf;
using std::tr1::make_tuple;
using std::tr1::get;

#define SURF_MATCH_CONFIDENCE 0.65f
#define ORB_MATCH_CONFIDENCE  0.3f
#define WORK_MEGAPIX 0.6

typedef TestBaseWithParam<string> stitch;
typedef TestBaseWithParam<string> match;
typedef std::tr1::tuple<string, int> matchVector_t;
typedef TestBaseWithParam<matchVector_t> matchVector;

#ifdef HAVE_OPENCV_XFEATURES2D_TODO_FIND_WHY_SURF_IS_NOT_ABLE_TO_STITCH_PANOS
#define TEST_DETECTORS testing::Values("surf", "orb")
#else
#define TEST_DETECTORS testing::Values<string>("orb")
#endif

PERF_TEST_P(stitch, a123, TEST_DETECTORS)
{
    Mat pano;

    vector<Mat> imgs;
    imgs.push_back( imread( getDataPath("stitching/a1.png") ) );
    imgs.push_back( imread( getDataPath("stitching/a2.png") ) );
    imgs.push_back( imread( getDataPath("stitching/a3.png") ) );

    Ptr<detail::FeaturesFinder> featuresFinder = GetParam() == "orb"
            ? Ptr<detail::FeaturesFinder>(new detail::OrbFeaturesFinder())
            : Ptr<detail::FeaturesFinder>(new detail::SurfFeaturesFinder());

    Ptr<detail::FeaturesMatcher> featuresMatcher = GetParam() == "orb"
            ? makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE)
            : makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE);

    declare.time(30 * 20).iterations(20);

    while(next())
    {
        Stitcher stitcher = Stitcher::createDefault();
        stitcher.setFeaturesFinder(featuresFinder);
        stitcher.setFeaturesMatcher(featuresMatcher);
        stitcher.setWarper(makePtr<SphericalWarper>());
        stitcher.setRegistrationResol(WORK_MEGAPIX);

        startTimer();
        stitcher.stitch(imgs, pano);
        stopTimer();
    }

    EXPECT_NEAR(pano.size().width, 1182, 50);
    EXPECT_NEAR(pano.size().height, 682, 30);

    SANITY_CHECK_NOTHING();
}

PERF_TEST_P(stitch, b12, TEST_DETECTORS)
{
    Mat pano;

    vector<Mat> imgs;
    imgs.push_back( imread( getDataPath("stitching/b1.png") ) );
    imgs.push_back( imread( getDataPath("stitching/b2.png") ) );

    Ptr<detail::FeaturesFinder> featuresFinder = GetParam() == "orb"
            ? Ptr<detail::FeaturesFinder>(new detail::OrbFeaturesFinder())
            : Ptr<detail::FeaturesFinder>(new detail::SurfFeaturesFinder());

    Ptr<detail::FeaturesMatcher> featuresMatcher = GetParam() == "orb"
            ? makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE)
            : makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE);

    declare.time(30 * 20).iterations(20);

    while(next())
    {
        Stitcher stitcher = Stitcher::createDefault();
        stitcher.setFeaturesFinder(featuresFinder);
        stitcher.setFeaturesMatcher(featuresMatcher);
        stitcher.setWarper(makePtr<SphericalWarper>());
        stitcher.setRegistrationResol(WORK_MEGAPIX);

        startTimer();
        stitcher.stitch(imgs, pano);
        stopTimer();
    }

    Mat pano_small;
    if (!pano.empty())
        resize(pano, pano_small, Size(320, 240), 0, 0, INTER_AREA);

    SANITY_CHECK(pano_small, 5);
}

PERF_TEST_P( match, bestOf2Nearest, TEST_DETECTORS)
{
    Mat img1, img1_full = imread( getDataPath("stitching/b1.png") );
    Mat img2, img2_full = imread( getDataPath("stitching/b2.png") );
    float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total()));
    float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total()));
    resize(img1_full, img1, Size(), scale1, scale1);
    resize(img2_full, img2, Size(), scale2, scale2);

    Ptr<detail::FeaturesFinder> finder;
    Ptr<detail::FeaturesMatcher> matcher;
    if (GetParam() == "surf")
    {
        finder = makePtr<detail::SurfFeaturesFinder>();
        matcher = makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE);
    }
    else if (GetParam() == "orb")
    {
        finder = makePtr<detail::OrbFeaturesFinder>();
        matcher = makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE);
    }
    else
    {
        FAIL() << "Unknown 2D features type: " << GetParam();
    }

    detail::ImageFeatures features1, features2;
    (*finder)(img1, features1);
    (*finder)(img2, features2);

    detail::MatchesInfo pairwise_matches;

    declare.in(features1.descriptors, features2.descriptors);

    while(next())
    {
        cvflann::seed_random(42);//for predictive FlannBasedMatcher
        startTimer();
        (*matcher)(features1, features2, pairwise_matches);
        stopTimer();
        matcher->collectGarbage();
    }

    std::vector<DMatch>& matches = pairwise_matches.matches;
    if (GetParam() == "orb") matches.resize(0);
    for(size_t q = 0; q < matches.size(); ++q)
        if (matches[q].imgIdx < 0) { matches.resize(q); break;}
    SANITY_CHECK_MATCHES(matches);
}

PERF_TEST_P( matchVector, bestOf2NearestVectorFeatures, testing::Combine(
                 TEST_DETECTORS,
                 testing::Values(2, 4, 8))
             )
{
    Mat img1, img1_full = imread( getDataPath("stitching/b1.png") );
    Mat img2, img2_full = imread( getDataPath("stitching/b2.png") );
    float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total()));
    float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total()));
    resize(img1_full, img1, Size(), scale1, scale1);
    resize(img2_full, img2, Size(), scale2, scale2);

    Ptr<detail::FeaturesFinder> finder;
    Ptr<detail::FeaturesMatcher> matcher;
    string detectorName = get<0>(GetParam());
    int featuresVectorSize = get<1>(GetParam());
    if (detectorName == "surf")
    {
        finder = makePtr<detail::SurfFeaturesFinder>();
        matcher = makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE);
    }
    else if (detectorName == "orb")
    {
        finder = makePtr<detail::OrbFeaturesFinder>();
        matcher = makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE);
    }
    else
    {
        FAIL() << "Unknown 2D features type: " << get<0>(GetParam());
    }

    detail::ImageFeatures features1, features2;
    (*finder)(img1, features1);
    (*finder)(img2, features2);
    vector<detail::ImageFeatures> features;
    vector<detail::MatchesInfo> pairwise_matches;
    for(int i = 0; i < featuresVectorSize/2; i++)
    {
        features.push_back(features1);
        features.push_back(features2);
    }

    declare.time(200);
    while(next())
    {
        cvflann::seed_random(42);//for predictive FlannBasedMatcher
        startTimer();
        (*matcher)(features, pairwise_matches);
        stopTimer();
        matcher->collectGarbage();
    }


    std::vector<DMatch>& matches = pairwise_matches[detectorName == "surf" ? 1 : 0].matches;
    for(size_t q = 0; q < matches.size(); ++q)
        if (matches[q].imgIdx < 0) { matches.resize(q); break;}
    SANITY_CHECK_MATCHES(matches);
}