test_optflow.cpp 11.7 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"

#ifdef HAVE_CUDA

using namespace cvtest;

//////////////////////////////////////////////////////
// BroxOpticalFlow

//#define BROX_DUMP

struct BroxOpticalFlow : testing::TestWithParam<cv::cuda::DeviceInfo>
{
    cv::cuda::DeviceInfo devInfo;

    virtual void SetUp()
    {
        devInfo = GetParam();

        cv::cuda::setDevice(devInfo.deviceID());
    }
};

CUDA_TEST_P(BroxOpticalFlow, Regression)
{
    cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
    ASSERT_FALSE(frame0.empty());

    cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
    ASSERT_FALSE(frame1.empty());

    cv::Ptr<cv::cuda::BroxOpticalFlow> brox =
            cv::cuda::BroxOpticalFlow::create(0.197 /*alpha*/, 50.0 /*gamma*/, 0.8 /*scale_factor*/,
                                              10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);

    cv::cuda::GpuMat flow;
    brox->calc(loadMat(frame0), loadMat(frame1), flow);

    cv::cuda::GpuMat flows[2];
    cv::cuda::split(flow, flows);

    cv::cuda::GpuMat u = flows[0];
    cv::cuda::GpuMat v = flows[1];

    std::string fname(cvtest::TS::ptr()->get_data_path());
    if (devInfo.majorVersion() >= 2)
        fname += "opticalflow/brox_optical_flow_cc20.bin";
    else
        fname += "opticalflow/brox_optical_flow.bin";

#ifndef BROX_DUMP
    std::ifstream f(fname.c_str(), std::ios_base::binary);

    int rows, cols;

    f.read((char*) &rows, sizeof(rows));
    f.read((char*) &cols, sizeof(cols));

    cv::Mat u_gold(rows, cols, CV_32FC1);

    for (int i = 0; i < u_gold.rows; ++i)
        f.read(u_gold.ptr<char>(i), u_gold.cols * sizeof(float));

    cv::Mat v_gold(rows, cols, CV_32FC1);

    for (int i = 0; i < v_gold.rows; ++i)
        f.read(v_gold.ptr<char>(i), v_gold.cols * sizeof(float));

    EXPECT_MAT_SIMILAR(u_gold, u, 1e-3);
    EXPECT_MAT_SIMILAR(v_gold, v, 1e-3);
#else
    std::ofstream f(fname.c_str(), std::ios_base::binary);

    f.write((char*) &u.rows, sizeof(u.rows));
    f.write((char*) &u.cols, sizeof(u.cols));

    cv::Mat h_u(u);
    cv::Mat h_v(v);

    for (int i = 0; i < u.rows; ++i)
        f.write(h_u.ptr<char>(i), u.cols * sizeof(float));

    for (int i = 0; i < v.rows; ++i)
        f.write(h_v.ptr<char>(i), v.cols * sizeof(float));
#endif
}

CUDA_TEST_P(BroxOpticalFlow, OpticalFlowNan)
{
    cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
    ASSERT_FALSE(frame0.empty());

    cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
    ASSERT_FALSE(frame1.empty());

    cv::Mat r_frame0, r_frame1;
    cv::resize(frame0, r_frame0, cv::Size(1380,1000));
    cv::resize(frame1, r_frame1, cv::Size(1380,1000));

    cv::Ptr<cv::cuda::BroxOpticalFlow> brox =
            cv::cuda::BroxOpticalFlow::create(0.197 /*alpha*/, 50.0 /*gamma*/, 0.8 /*scale_factor*/,
                                              10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);

    cv::cuda::GpuMat flow;
    brox->calc(loadMat(frame0), loadMat(frame1), flow);

    cv::cuda::GpuMat flows[2];
    cv::cuda::split(flow, flows);

    cv::cuda::GpuMat u = flows[0];
    cv::cuda::GpuMat v = flows[1];

    cv::Mat h_u, h_v;
    u.download(h_u);
    v.download(h_v);

    EXPECT_TRUE(cv::checkRange(h_u));
    EXPECT_TRUE(cv::checkRange(h_v));
};

INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, BroxOpticalFlow, ALL_DEVICES);

//////////////////////////////////////////////////////
// PyrLKOpticalFlow

namespace
{
a  
Kai Westerkamp committed
170
    IMPLEMENT_PARAM_CLASS(UseGray, bool)
wester committed
171 172
}

a  
Kai Westerkamp committed
173
PARAM_TEST_CASE(PyrLKOpticalFlow, cv::cuda::DeviceInfo, UseGray)
wester committed
174 175
{
    cv::cuda::DeviceInfo devInfo;
a  
Kai Westerkamp committed
176 177
    bool useGray;

wester committed
178 179 180
    virtual void SetUp()
    {
        devInfo = GET_PARAM(0);
a  
Kai Westerkamp committed
181 182
        useGray = GET_PARAM(1);

wester committed
183 184 185 186 187 188
        cv::cuda::setDevice(devInfo.deviceID());
    }
};

CUDA_TEST_P(PyrLKOpticalFlow, Sparse)
{
a  
Kai Westerkamp committed
189
    cv::Mat frame0 = readImage("opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
wester committed
190 191
    ASSERT_FALSE(frame0.empty());

a  
Kai Westerkamp committed
192
    cv::Mat frame1 = readImage("opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
wester committed
193 194 195
    ASSERT_FALSE(frame1.empty());

    cv::Mat gray_frame;
a  
Kai Westerkamp committed
196
    if (useGray)
wester committed
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        gray_frame = frame0;
    else
        cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);

    std::vector<cv::Point2f> pts;
    cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0);

    cv::cuda::GpuMat d_pts;
    cv::Mat pts_mat(1, (int) pts.size(), CV_32FC2, (void*) &pts[0]);
    d_pts.upload(pts_mat);

    cv::Ptr<cv::cuda::SparsePyrLKOpticalFlow> pyrLK =
            cv::cuda::SparsePyrLKOpticalFlow::create();

    cv::cuda::GpuMat d_nextPts;
    cv::cuda::GpuMat d_status;
a  
Kai Westerkamp committed
213
    pyrLK->calc(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status);
wester committed
214 215

    std::vector<cv::Point2f> nextPts(d_nextPts.cols);
a  
Kai Westerkamp committed
216
    cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*) &nextPts[0]);
wester committed
217 218 219
    d_nextPts.download(nextPts_mat);

    std::vector<unsigned char> status(d_status.cols);
a  
Kai Westerkamp committed
220
    cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void*) &status[0]);
wester committed
221 222
    d_status.download(status_mat);

a  
Kai Westerkamp committed
223 224 225 226
    std::vector<cv::Point2f> nextPts_gold;
    std::vector<unsigned char> status_gold;
    cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, cv::noArray());

wester committed
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    ASSERT_EQ(nextPts_gold.size(), nextPts.size());
    ASSERT_EQ(status_gold.size(), status.size());

    size_t mistmatch = 0;
    for (size_t i = 0; i < nextPts.size(); ++i)
    {
        cv::Point2i a = nextPts[i];
        cv::Point2i b = nextPts_gold[i];

        if (status[i] != status_gold[i])
        {
            ++mistmatch;
            continue;
        }

        if (status[i])
        {
            bool eq = std::abs(a.x - b.x) <= 1 && std::abs(a.y - b.y) <= 1;

            if (!eq)
                ++mistmatch;
        }
    }

    double bad_ratio = static_cast<double>(mistmatch) / nextPts.size();

    ASSERT_LE(bad_ratio, 0.01);
}

INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, PyrLKOpticalFlow, testing::Combine(
    ALL_DEVICES,
a  
Kai Westerkamp committed
258
    testing::Values(UseGray(true), UseGray(false))));
wester committed
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

//////////////////////////////////////////////////////
// FarnebackOpticalFlow

namespace
{
    IMPLEMENT_PARAM_CLASS(PyrScale, double)
    IMPLEMENT_PARAM_CLASS(PolyN, int)
    CV_FLAGS(FarnebackOptFlowFlags, 0, OPTFLOW_FARNEBACK_GAUSSIAN)
    IMPLEMENT_PARAM_CLASS(UseInitFlow, bool)
}

PARAM_TEST_CASE(FarnebackOpticalFlow, cv::cuda::DeviceInfo, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow)
{
    cv::cuda::DeviceInfo devInfo;
    double pyrScale;
    int polyN;
    int flags;
    bool useInitFlow;

    virtual void SetUp()
    {
        devInfo = GET_PARAM(0);
        pyrScale = GET_PARAM(1);
        polyN = GET_PARAM(2);
        flags = GET_PARAM(3);
        useInitFlow = GET_PARAM(4);

        cv::cuda::setDevice(devInfo.deviceID());
    }
};

CUDA_TEST_P(FarnebackOpticalFlow, Accuracy)
{
    cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
    ASSERT_FALSE(frame0.empty());

    cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
    ASSERT_FALSE(frame1.empty());

    double polySigma = polyN <= 5 ? 1.1 : 1.5;

    cv::Ptr<cv::cuda::FarnebackOpticalFlow> farn =
            cv::cuda::FarnebackOpticalFlow::create();
    farn->setPyrScale(pyrScale);
    farn->setPolyN(polyN);
    farn->setPolySigma(polySigma);
    farn->setFlags(flags);

    cv::cuda::GpuMat d_flow;
    farn->calc(loadMat(frame0), loadMat(frame1), d_flow);

    cv::Mat flow;
    if (useInitFlow)
    {
        d_flow.download(flow);

        farn->setFlags(farn->getFlags() | cv::OPTFLOW_USE_INITIAL_FLOW);
        farn->calc(loadMat(frame0), loadMat(frame1), d_flow);
    }

    cv::calcOpticalFlowFarneback(
        frame0, frame1, flow, farn->getPyrScale(), farn->getNumLevels(), farn->getWinSize(),
        farn->getNumIters(), farn->getPolyN(), farn->getPolySigma(), farn->getFlags());

    EXPECT_MAT_SIMILAR(flow, d_flow, 0.1);
}

INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, FarnebackOpticalFlow, testing::Combine(
    ALL_DEVICES,
    testing::Values(PyrScale(0.3), PyrScale(0.5), PyrScale(0.8)),
    testing::Values(PolyN(5), PolyN(7)),
    testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)),
    testing::Values(UseInitFlow(false), UseInitFlow(true))));

//////////////////////////////////////////////////////
// OpticalFlowDual_TVL1

namespace
{
    IMPLEMENT_PARAM_CLASS(Gamma, double)
}

PARAM_TEST_CASE(OpticalFlowDual_TVL1, cv::cuda::DeviceInfo, Gamma)
{
    cv::cuda::DeviceInfo devInfo;
    double gamma;

    virtual void SetUp()
    {
        devInfo = GET_PARAM(0);
        gamma = GET_PARAM(1);

        cv::cuda::setDevice(devInfo.deviceID());
    }
};

CUDA_TEST_P(OpticalFlowDual_TVL1, Accuracy)
{
    cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
    ASSERT_FALSE(frame0.empty());

    cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
    ASSERT_FALSE(frame1.empty());

    cv::Ptr<cv::cuda::OpticalFlowDual_TVL1> d_alg =
            cv::cuda::OpticalFlowDual_TVL1::create();
    d_alg->setNumIterations(10);
    d_alg->setGamma(gamma);

    cv::cuda::GpuMat d_flow;
    d_alg->calc(loadMat(frame0), loadMat(frame1), d_flow);

    cv::Ptr<cv::DualTVL1OpticalFlow> alg = cv::createOptFlow_DualTVL1();
    alg->setMedianFiltering(1);
    alg->setInnerIterations(1);
    alg->setOuterIterations(d_alg->getNumIterations());
    alg->setGamma(gamma);

    cv::Mat flow;
    alg->calc(frame0, frame1, flow);

    EXPECT_MAT_SIMILAR(flow, d_flow, 4e-3);
}

INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, OpticalFlowDual_TVL1, testing::Combine(
    ALL_DEVICES,
    testing::Values(Gamma(0.0), Gamma(1.0))));

#endif // HAVE_CUDA