ap3p.cpp 14.3 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
#include "ap3p.h"

#include <cmath>
#include <complex>
#if defined (_MSC_VER) && (_MSC_VER <= 1700)
static inline double cbrt(double x) { return (double)cv::cubeRoot((float)x); };
#endif

using namespace std;

namespace {
void solveQuartic(const double *factors, double *realRoots) {
    const double &a4 = factors[0];
    const double &a3 = factors[1];
    const double &a2 = factors[2];
    const double &a1 = factors[3];
    const double &a0 = factors[4];

    double a4_2 = a4 * a4;
    double a3_2 = a3 * a3;
    double a4_3 = a4_2 * a4;
    double a2a4 = a2 * a4;

    double p4 = (8 * a2a4 - 3 * a3_2) / (8 * a4_2);
    double q4 = (a3_2 * a3 - 4 * a2a4 * a3 + 8 * a1 * a4_2) / (8 * a4_3);
    double r4 = (256 * a0 * a4_3 - 3 * (a3_2 * a3_2) - 64 * a1 * a3 * a4_2 + 16 * a2a4 * a3_2) / (256 * (a4_3 * a4));

    double p3 = ((p4 * p4) / 12 + r4) / 3; // /=-3
    double q3 = (72 * r4 * p4 - 2 * p4 * p4 * p4 - 27 * q4 * q4) / 432; // /=2

    double t; // *=2
    complex<double> w;
    if (q3 >= 0)
        w = -sqrt(static_cast<complex<double> >(q3 * q3 - p3 * p3 * p3)) - q3;
    else
        w = sqrt(static_cast<complex<double> >(q3 * q3 - p3 * p3 * p3)) - q3;
    if (w.imag() == 0.0) {
        w.real(cbrt(w.real()));
        t = 2.0 * (w.real() + p3 / w.real());
    } else {
        w = pow(w, 1.0 / 3);
        t = 4.0 * w.real();
    }

    complex<double> sqrt_2m = sqrt(static_cast<complex<double> >(-2 * p4 / 3 + t));
    double B_4A = -a3 / (4 * a4);
    double complex1 = 4 * p4 / 3 + t;
    complex<double> complex2 = 2 * q4 / sqrt_2m;
    double sqrt_2m_rh = sqrt_2m.real() / 2;
    double sqrt1 = sqrt(-(complex1 + complex2)).real() / 2;
    realRoots[0] = B_4A + sqrt_2m_rh + sqrt1;
    realRoots[1] = B_4A + sqrt_2m_rh - sqrt1;
    double sqrt2 = sqrt(-(complex1 - complex2)).real() / 2;
    realRoots[2] = B_4A - sqrt_2m_rh + sqrt2;
    realRoots[3] = B_4A - sqrt_2m_rh - sqrt2;
}

void polishQuarticRoots(const double *coeffs, double *roots) {
    const int iterations = 2;
    for (int i = 0; i < iterations; ++i) {
        for (int j = 0; j < 4; ++j) {
            double error =
                    (((coeffs[0] * roots[j] + coeffs[1]) * roots[j] + coeffs[2]) * roots[j] + coeffs[3]) * roots[j] +
                    coeffs[4];
            double
                    derivative =
                    ((4 * coeffs[0] * roots[j] + 3 * coeffs[1]) * roots[j] + 2 * coeffs[2]) * roots[j] + coeffs[3];
            roots[j] -= error / derivative;
        }
    }
}

inline void vect_cross(const double *a, const double *b, double *result) {
    result[0] = a[1] * b[2] - a[2] * b[1];
    result[1] = -(a[0] * b[2] - a[2] * b[0]);
    result[2] = a[0] * b[1] - a[1] * b[0];
}

inline double vect_dot(const double *a, const double *b) {
    return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}

inline double vect_norm(const double *a) {
    return sqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]);
}

inline void vect_scale(const double s, const double *a, double *result) {
    result[0] = a[0] * s;
    result[1] = a[1] * s;
    result[2] = a[2] * s;
}

inline void vect_sub(const double *a, const double *b, double *result) {
    result[0] = a[0] - b[0];
    result[1] = a[1] - b[1];
    result[2] = a[2] - b[2];
}

inline void vect_divide(const double *a, const double d, double *result) {
    result[0] = a[0] / d;
    result[1] = a[1] / d;
    result[2] = a[2] / d;
}

inline void mat_mult(const double a[3][3], const double b[3][3], double result[3][3]) {
    result[0][0] = a[0][0] * b[0][0] + a[0][1] * b[1][0] + a[0][2] * b[2][0];
    result[0][1] = a[0][0] * b[0][1] + a[0][1] * b[1][1] + a[0][2] * b[2][1];
    result[0][2] = a[0][0] * b[0][2] + a[0][1] * b[1][2] + a[0][2] * b[2][2];

    result[1][0] = a[1][0] * b[0][0] + a[1][1] * b[1][0] + a[1][2] * b[2][0];
    result[1][1] = a[1][0] * b[0][1] + a[1][1] * b[1][1] + a[1][2] * b[2][1];
    result[1][2] = a[1][0] * b[0][2] + a[1][1] * b[1][2] + a[1][2] * b[2][2];

    result[2][0] = a[2][0] * b[0][0] + a[2][1] * b[1][0] + a[2][2] * b[2][0];
    result[2][1] = a[2][0] * b[0][1] + a[2][1] * b[1][1] + a[2][2] * b[2][1];
    result[2][2] = a[2][0] * b[0][2] + a[2][1] * b[1][2] + a[2][2] * b[2][2];
}
}

namespace cv {
void ap3p::init_inverse_parameters() {
    inv_fx = 1. / fx;
    inv_fy = 1. / fy;
    cx_fx = cx / fx;
    cy_fy = cy / fy;
}

ap3p::ap3p(cv::Mat cameraMatrix) {
    if (cameraMatrix.depth() == CV_32F)
        init_camera_parameters<float>(cameraMatrix);
    else
        init_camera_parameters<double>(cameraMatrix);
    init_inverse_parameters();
}

ap3p::ap3p(double _fx, double _fy, double _cx, double _cy) {
    fx = _fx;
    fy = _fy;
    cx = _cx;
    cy = _cy;
    init_inverse_parameters();
}

// This algorithm is from "Tong Ke, Stergios Roumeliotis, An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (Accepted by CVPR 2017)
// See https://arxiv.org/pdf/1701.08237.pdf
// featureVectors: The 3 bearing measurements (normalized) stored as column vectors
// worldPoints: The positions of the 3 feature points stored as column vectors
// solutionsR: 4 possible solutions of rotation matrix of the world w.r.t the camera frame
// solutionsT: 4 possible solutions of translation of the world origin w.r.t the camera frame
int ap3p::computePoses(const double featureVectors[3][3],
                       const double worldPoints[3][3],
                       double solutionsR[4][3][3],
                       double solutionsT[4][3]) {

    //world point vectors
    double w1[3] = {worldPoints[0][0], worldPoints[1][0], worldPoints[2][0]};
    double w2[3] = {worldPoints[0][1], worldPoints[1][1], worldPoints[2][1]};
    double w3[3] = {worldPoints[0][2], worldPoints[1][2], worldPoints[2][2]};
    // k1
    double u0[3];
    vect_sub(w1, w2, u0);

    double nu0 = vect_norm(u0);
    double k1[3];
    vect_divide(u0, nu0, k1);
    // bi
    double b1[3] = {featureVectors[0][0], featureVectors[1][0], featureVectors[2][0]};
    double b2[3] = {featureVectors[0][1], featureVectors[1][1], featureVectors[2][1]};
    double b3[3] = {featureVectors[0][2], featureVectors[1][2], featureVectors[2][2]};
    // k3,tz
    double k3[3];
    vect_cross(b1, b2, k3);
    double nk3 = vect_norm(k3);
    vect_divide(k3, nk3, k3);

    double tz[3];
    vect_cross(b1, k3, tz);
    // ui,vi
    double v1[3];
    vect_cross(b1, b3, v1);
    double v2[3];
    vect_cross(b2, b3, v2);

    double u1[3];
    vect_sub(w1, w3, u1);
    // coefficients related terms
    double u1k1 = vect_dot(u1, k1);
    double k3b3 = vect_dot(k3, b3);
    // f1i
    double f11 = k3b3;
    double f13 = vect_dot(k3, v1);
    double f15 = -u1k1 * f11;
    //delta
    double nl[3];
    vect_cross(u1, k1, nl);
    double delta = vect_norm(nl);
    vect_divide(nl, delta, nl);
    f11 *= delta;
    f13 *= delta;
    // f2i
    double u2k1 = u1k1 - nu0;
    double f21 = vect_dot(tz, v2);
    double f22 = nk3 * k3b3;
    double f23 = vect_dot(k3, v2);
    double f24 = u2k1 * f22;
    double f25 = -u2k1 * f21;
    f21 *= delta;
    f22 *= delta;
    f23 *= delta;
    double g1 = f13 * f22;
    double g2 = f13 * f25 - f15 * f23;
    double g3 = f11 * f23 - f13 * f21;
    double g4 = -f13 * f24;
    double g5 = f11 * f22;
    double g6 = f11 * f25 - f15 * f21;
    double g7 = -f15 * f24;
    double coeffs[5] = {g5 * g5 + g1 * g1 + g3 * g3,
                        2 * (g5 * g6 + g1 * g2 + g3 * g4),
                        g6 * g6 + 2 * g5 * g7 + g2 * g2 + g4 * g4 - g1 * g1 - g3 * g3,
                        2 * (g6 * g7 - g1 * g2 - g3 * g4),
                        g7 * g7 - g2 * g2 - g4 * g4};
    double s[4];
    solveQuartic(coeffs, s);
    polishQuarticRoots(coeffs, s);

    double temp[3];
    vect_cross(k1, nl, temp);

    double Ck1nl[3][3] =
            {{k1[0], nl[0], temp[0]},
             {k1[1], nl[1], temp[1]},
             {k1[2], nl[2], temp[2]}};

    double Cb1k3tzT[3][3] =
            {{b1[0], b1[1], b1[2]},
             {k3[0], k3[1], k3[2]},
             {tz[0], tz[1], tz[2]}};

    double b3p[3];
    vect_scale((delta / k3b3), b3, b3p);

    int nb_solutions = 0;
    for (int i = 0; i < 4; ++i) {
        double ctheta1p = s[i];
        if (abs(ctheta1p) > 1)
            continue;
        double stheta1p = sqrt(1 - ctheta1p * ctheta1p);
        stheta1p = (k3b3 > 0) ? stheta1p : -stheta1p;
        double ctheta3 = g1 * ctheta1p + g2;
        double stheta3 = g3 * ctheta1p + g4;
        double ntheta3 = stheta1p / ((g5 * ctheta1p + g6) * ctheta1p + g7);
        ctheta3 *= ntheta3;
        stheta3 *= ntheta3;

        double C13[3][3] =
                {{ctheta3,            0,         -stheta3},
                 {stheta1p * stheta3, ctheta1p,  stheta1p * ctheta3},
                 {ctheta1p * stheta3, -stheta1p, ctheta1p * ctheta3}};

        double temp_matrix[3][3];
        double R[3][3];
        mat_mult(Ck1nl, C13, temp_matrix);
        mat_mult(temp_matrix, Cb1k3tzT, R);

        // R' * p3
        double rp3[3] =
                {w3[0] * R[0][0] + w3[1] * R[1][0] + w3[2] * R[2][0],
                 w3[0] * R[0][1] + w3[1] * R[1][1] + w3[2] * R[2][1],
                 w3[0] * R[0][2] + w3[1] * R[1][2] + w3[2] * R[2][2]};

        double pxstheta1p[3];
        vect_scale(stheta1p, b3p, pxstheta1p);

        vect_sub(pxstheta1p, rp3, solutionsT[nb_solutions]);

        solutionsR[nb_solutions][0][0] = R[0][0];
        solutionsR[nb_solutions][1][0] = R[0][1];
        solutionsR[nb_solutions][2][0] = R[0][2];
        solutionsR[nb_solutions][0][1] = R[1][0];
        solutionsR[nb_solutions][1][1] = R[1][1];
        solutionsR[nb_solutions][2][1] = R[1][2];
        solutionsR[nb_solutions][0][2] = R[2][0];
        solutionsR[nb_solutions][1][2] = R[2][1];
        solutionsR[nb_solutions][2][2] = R[2][2];

        nb_solutions++;
    }

    return nb_solutions;
}

bool ap3p::solve(cv::Mat &R, cv::Mat &tvec, const cv::Mat &opoints, const cv::Mat &ipoints) {
    CV_INSTRUMENT_REGION()

    double rotation_matrix[3][3], translation[3];
    std::vector<double> points;
    if (opoints.depth() == ipoints.depth()) {
        if (opoints.depth() == CV_32F)
            extract_points<cv::Point3f, cv::Point2f>(opoints, ipoints, points);
        else
            extract_points<cv::Point3d, cv::Point2d>(opoints, ipoints, points);
    } else if (opoints.depth() == CV_32F)
        extract_points<cv::Point3f, cv::Point2d>(opoints, ipoints, points);
    else
        extract_points<cv::Point3d, cv::Point2f>(opoints, ipoints, points);

    bool result = solve(rotation_matrix, translation, points[0], points[1], points[2], points[3], points[4], points[5],
                        points[6], points[7], points[8], points[9], points[10], points[11], points[12], points[13],
                        points[14],
                        points[15], points[16], points[17], points[18], points[19]);
    cv::Mat(3, 1, CV_64F, translation).copyTo(tvec);
    cv::Mat(3, 3, CV_64F, rotation_matrix).copyTo(R);
    return result;
}

int ap3p::solve(std::vector<cv::Mat> &Rs, std::vector<cv::Mat> &tvecs, const cv::Mat &opoints, const cv::Mat &ipoints) {
    CV_INSTRUMENT_REGION()

    double rotation_matrix[4][3][3], translation[4][3];
    std::vector<double> points;
    if (opoints.depth() == ipoints.depth()) {
        if (opoints.depth() == CV_32F)
            extract_points<cv::Point3f, cv::Point2f>(opoints, ipoints, points);
        else
            extract_points<cv::Point3d, cv::Point2d>(opoints, ipoints, points);
    } else if (opoints.depth() == CV_32F)
        extract_points<cv::Point3f, cv::Point2d>(opoints, ipoints, points);
    else
        extract_points<cv::Point3d, cv::Point2f>(opoints, ipoints, points);

    int solutions = solve(rotation_matrix, translation,
                          points[0], points[1], points[2], points[3], points[4],
                          points[5], points[6], points[7], points[8], points[9],
                          points[10], points[11], points[12], points[13], points[14]);

    for (int i = 0; i < solutions; i++) {
        cv::Mat R, tvec;
        cv::Mat(3, 1, CV_64F, translation[i]).copyTo(tvec);
        cv::Mat(3, 3, CV_64F, rotation_matrix[i]).copyTo(R);

        Rs.push_back(R);
        tvecs.push_back(tvec);
    }

    return solutions;
}

bool
ap3p::solve(double R[3][3], double t[3], double mu0, double mv0, double X0, double Y0, double Z0, double mu1,
            double mv1,
            double X1, double Y1, double Z1, double mu2, double mv2, double X2, double Y2, double Z2, double mu3,
            double mv3, double X3, double Y3, double Z3) {
    double Rs[4][3][3], ts[4][3];

    int n = solve(Rs, ts, mu0, mv0, X0, Y0, Z0, mu1, mv1, X1, Y1, Z1, mu2, mv2, X2, Y2, Z2);
    if (n == 0)
        return false;

    int ns = 0;
    double min_reproj = 0;
    for (int i = 0; i < n; i++) {
        double X3p = Rs[i][0][0] * X3 + Rs[i][0][1] * Y3 + Rs[i][0][2] * Z3 + ts[i][0];
        double Y3p = Rs[i][1][0] * X3 + Rs[i][1][1] * Y3 + Rs[i][1][2] * Z3 + ts[i][1];
        double Z3p = Rs[i][2][0] * X3 + Rs[i][2][1] * Y3 + Rs[i][2][2] * Z3 + ts[i][2];
        double mu3p = cx + fx * X3p / Z3p;
        double mv3p = cy + fy * Y3p / Z3p;
        double reproj = (mu3p - mu3) * (mu3p - mu3) + (mv3p - mv3) * (mv3p - mv3);
        if (i == 0 || min_reproj > reproj) {
            ns = i;
            min_reproj = reproj;
        }
    }

    for (int i = 0; i < 3; i++) {
        for (int j = 0; j < 3; j++)
            R[i][j] = Rs[ns][i][j];
        t[i] = ts[ns][i];
    }

    return true;
}

int ap3p::solve(double R[4][3][3], double t[4][3], double mu0, double mv0, double X0, double Y0, double Z0, double mu1,
                double mv1, double X1, double Y1, double Z1, double mu2, double mv2, double X2, double Y2, double Z2) {
    double mk0, mk1, mk2;
    double norm;

    mu0 = inv_fx * mu0 - cx_fx;
    mv0 = inv_fy * mv0 - cy_fy;
    norm = sqrt(mu0 * mu0 + mv0 * mv0 + 1);
    mk0 = 1. / norm;
    mu0 *= mk0;
    mv0 *= mk0;

    mu1 = inv_fx * mu1 - cx_fx;
    mv1 = inv_fy * mv1 - cy_fy;
    norm = sqrt(mu1 * mu1 + mv1 * mv1 + 1);
    mk1 = 1. / norm;
    mu1 *= mk1;
    mv1 *= mk1;

    mu2 = inv_fx * mu2 - cx_fx;
    mv2 = inv_fy * mv2 - cy_fy;
    norm = sqrt(mu2 * mu2 + mv2 * mv2 + 1);
    mk2 = 1. / norm;
    mu2 *= mk2;
    mv2 *= mk2;

    double featureVectors[3][3] = {{mu0, mu1, mu2},
                                   {mv0, mv1, mv2},
                                   {mk0, mk1, mk2}};
    double worldPoints[3][3] = {{X0, X1, X2},
                                {Y0, Y1, Y2},
                                {Z0, Z1, Z2}};

    return computePoses(featureVectors, worldPoints, R, t);
}
}