warpers_inl.hpp 21.1 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

a  
Kai Westerkamp committed
43 44
#ifndef __OPENCV_STITCHING_WARPERS_INL_HPP__
#define __OPENCV_STITCHING_WARPERS_INL_HPP__
wester committed
45

wester committed
46
#include "opencv2/core/core.hpp"
wester committed
47 48 49 50 51 52
#include "warpers.hpp" // Make your IDE see declarations

namespace cv {
namespace detail {

template <class P>
wester committed
53
Point2f RotationWarperBase<P>::warpPoint(const Point2f &pt, const Mat &K, const Mat &R)
wester committed
54 55 56 57 58 59 60 61 62
{
    projector_.setCameraParams(K, R);
    Point2f uv;
    projector_.mapForward(pt.x, pt.y, uv.x, uv.y);
    return uv;
}


template <class P>
wester committed
63
Rect RotationWarperBase<P>::buildMaps(Size src_size, const Mat &K, const Mat &R, Mat &xmap, Mat &ymap)
wester committed
64 65 66 67 68 69
{
    projector_.setCameraParams(K, R);

    Point dst_tl, dst_br;
    detectResultRoi(src_size, dst_tl, dst_br);

wester committed
70 71
    xmap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);
    ymap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);
wester committed
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

    float x, y;
    for (int v = dst_tl.y; v <= dst_br.y; ++v)
    {
        for (int u = dst_tl.x; u <= dst_br.x; ++u)
        {
            projector_.mapBackward(static_cast<float>(u), static_cast<float>(v), x, y);
            xmap.at<float>(v - dst_tl.y, u - dst_tl.x) = x;
            ymap.at<float>(v - dst_tl.y, u - dst_tl.x) = y;
        }
    }

    return Rect(dst_tl, dst_br);
}


template <class P>
wester committed
89 90
Point RotationWarperBase<P>::warp(const Mat &src, const Mat &K, const Mat &R, int interp_mode, int border_mode,
                                  Mat &dst)
wester committed
91
{
wester committed
92
    Mat xmap, ymap;
wester committed
93 94 95 96 97 98 99 100 101 102
    Rect dst_roi = buildMaps(src.size(), K, R, xmap, ymap);

    dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type());
    remap(src, dst, xmap, ymap, interp_mode, border_mode);

    return dst_roi.tl();
}


template <class P>
wester committed
103 104
void RotationWarperBase<P>::warpBackward(const Mat &src, const Mat &K, const Mat &R, int interp_mode, int border_mode,
                                         Size dst_size, Mat &dst)
wester committed
105 106 107 108 109
{
    projector_.setCameraParams(K, R);

    Point src_tl, src_br;
    detectResultRoi(dst_size, src_tl, src_br);
wester committed
110
    CV_Assert(src_br.x - src_tl.x + 1 == src.cols && src_br.y - src_tl.y + 1 == src.rows);
wester committed
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

    Mat xmap(dst_size, CV_32F);
    Mat ymap(dst_size, CV_32F);

    float u, v;
    for (int y = 0; y < dst_size.height; ++y)
    {
        for (int x = 0; x < dst_size.width; ++x)
        {
            projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v);
            xmap.at<float>(y, x) = u - src_tl.x;
            ymap.at<float>(y, x) = v - src_tl.y;
        }
    }

    dst.create(dst_size, src.type());
    remap(src, dst, xmap, ymap, interp_mode, border_mode);
}


template <class P>
wester committed
132
Rect RotationWarperBase<P>::warpRoi(Size src_size, const Mat &K, const Mat &R)
wester committed
133 134 135 136 137 138 139 140 141 142 143 144 145
{
    projector_.setCameraParams(K, R);

    Point dst_tl, dst_br;
    detectResultRoi(src_size, dst_tl, dst_br);

    return Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1));
}


template <class P>
void RotationWarperBase<P>::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br)
{
a  
Kai Westerkamp committed
146 147 148 149
    float tl_uf = std::numeric_limits<float>::max();
    float tl_vf = std::numeric_limits<float>::max();
    float br_uf = -std::numeric_limits<float>::max();
    float br_vf = -std::numeric_limits<float>::max();
wester committed
150 151 152 153 154 155 156

    float u, v;
    for (int y = 0; y < src_size.height; ++y)
    {
        for (int x = 0; x < src_size.width; ++x)
        {
            projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v);
a  
Kai Westerkamp committed
157 158
            tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
            br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
wester committed
159 160 161 162 163 164 165 166 167 168 169 170 171
        }
    }

    dst_tl.x = static_cast<int>(tl_uf);
    dst_tl.y = static_cast<int>(tl_vf);
    dst_br.x = static_cast<int>(br_uf);
    dst_br.y = static_cast<int>(br_vf);
}


template <class P>
void RotationWarperBase<P>::detectResultRoiByBorder(Size src_size, Point &dst_tl, Point &dst_br)
{
a  
Kai Westerkamp committed
172 173 174 175
    float tl_uf = std::numeric_limits<float>::max();
    float tl_vf = std::numeric_limits<float>::max();
    float br_uf = -std::numeric_limits<float>::max();
    float br_vf = -std::numeric_limits<float>::max();
wester committed
176 177 178 179 180

    float u, v;
    for (float x = 0; x < src_size.width; ++x)
    {
        projector_.mapForward(static_cast<float>(x), 0, u, v);
a  
Kai Westerkamp committed
181 182
        tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
        br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
wester committed
183 184

        projector_.mapForward(static_cast<float>(x), static_cast<float>(src_size.height - 1), u, v);
a  
Kai Westerkamp committed
185 186
        tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
        br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
wester committed
187 188 189 190
    }
    for (int y = 0; y < src_size.height; ++y)
    {
        projector_.mapForward(0, static_cast<float>(y), u, v);
a  
Kai Westerkamp committed
191 192
        tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
        br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
wester committed
193 194

        projector_.mapForward(static_cast<float>(src_size.width - 1), static_cast<float>(y), u, v);
a  
Kai Westerkamp committed
195 196
        tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
        br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
wester committed
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
    }

    dst_tl.x = static_cast<int>(tl_uf);
    dst_tl.y = static_cast<int>(tl_vf);
    dst_br.x = static_cast<int>(br_uf);
    dst_br.y = static_cast<int>(br_vf);
}


inline
void PlaneProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    x_ = t[0] + x_ / z_ * (1 - t[2]);
    y_ = t[1] + y_ / z_ * (1 - t[2]);

    u = scale * x_;
    v = scale * y_;
}


inline
void PlaneProjector::mapBackward(float u, float v, float &x, float &y)
{
    u = u / scale - t[0];
    v = v / scale - t[1];

    float z;
    x = k_rinv[0] * u + k_rinv[1] * v + k_rinv[2] * (1 - t[2]);
    y = k_rinv[3] * u + k_rinv[4] * v + k_rinv[5] * (1 - t[2]);
    z = k_rinv[6] * u + k_rinv[7] * v + k_rinv[8] * (1 - t[2]);

    x /= z;
    y /= z;
}


inline
void SphericalProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    u = scale * atan2f(x_, z_);
    float w = y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_);
    v = scale * (static_cast<float>(CV_PI) - acosf(w == w ? w : 0));
}


inline
void SphericalProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float sinv = sinf(static_cast<float>(CV_PI) - v);
    float x_ = sinv * sinf(u);
    float y_ = cosf(static_cast<float>(CV_PI) - v);
    float z_ = sinv * cosf(u);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}


inline
void CylindricalProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    u = scale * atan2f(x_, z_);
    v = scale * y_ / sqrtf(x_ * x_ + z_ * z_);
}


inline
void CylindricalProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float x_ = sinf(u);
    float y_ = v;
    float z_ = cosf(u);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void FisheyeProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = (float)CV_PI - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    u = scale * v_ * cosf(u_);
    v = scale * v_ * sinf(u_);
}

inline
void FisheyeProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float u_ = atan2f(v, u);
    float v_ = sqrtf(u*u + v*v);

    float sinv = sinf((float)CV_PI - v_);
    float x_ = sinv * sinf(u_);
    float y_ = cosf((float)CV_PI - v_);
    float z_ = sinv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void StereographicProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = (float)CV_PI - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    float r = sinf(v_) / (1 - cosf(v_));

    u = scale * r * cos(u_);
    v = scale * r * sin(u_);
}

inline
void StereographicProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float u_ = atan2f(v, u);
    float r = sqrtf(u*u + v*v);
    float v_ = 2 * atanf(1.f / r);

    float sinv = sinf((float)CV_PI - v_);
    float x_ = sinv * sinf(u_);
    float y_ = cosf((float)CV_PI - v_);
    float z_ = sinv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void CompressedRectilinearProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    u = scale * a * tanf(u_ / a);
    v = scale * b * tanf(v_) / cosf(u_);
}

inline
void CompressedRectilinearProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float aatg = a * atanf(u / a);
    float u_ = aatg;
    float v_ = atanf(v * cosf(aatg) / b);

    float cosv = cosf(v_);
    float x_ = cosv * sinf(u_);
    float y_ = sinf(v_);
    float z_ = cosv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void CompressedRectilinearPortraitProjector::mapForward(float x, float y, float &u, float &v)
{
    float y_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float x_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    u = - scale * a * tanf(u_ / a);
    v = scale * b * tanf(v_) / cosf(u_);
}

inline
void CompressedRectilinearPortraitProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= - scale;
    v /= scale;

    float aatg = a * atanf(u / a);
    float u_ = aatg;
    float v_ = atanf(v * cosf( aatg ) / b);

    float cosv = cosf(v_);
    float y_ = cosv * sinf(u_);
    float x_ = sinf(v_);
    float z_ = cosv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void PaniniProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    float tg = a * tanf(u_ / a);
    u = scale * tg;

    float sinu = sinf(u_);
    if ( fabs(sinu) < 1E-7 )
        v = scale * b * tanf(v_);
    else
        v = scale * b * tg * tanf(v_) / sinu;
}

inline
void PaniniProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float lamda = a * atanf(u / a);
    float u_ = lamda;

    float v_;
    if ( fabs(lamda) > 1E-7)
        v_ = atanf(v * sinf(lamda) / (b * a * tanf(lamda / a)));
    else
        v_ = atanf(v / b);

    float cosv = cosf(v_);
    float x_ = cosv * sinf(u_);
    float y_ = sinf(v_);
    float z_ = cosv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void PaniniPortraitProjector::mapForward(float x, float y, float &u, float &v)
{
    float y_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float x_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    float tg = a * tanf(u_ / a);
    u = - scale * tg;

    float sinu = sinf( u_ );
    if ( fabs(sinu) < 1E-7 )
        v = scale * b * tanf(v_);
    else
        v = scale * b * tg * tanf(v_) / sinu;
}

inline
void PaniniPortraitProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= - scale;
    v /= scale;

    float lamda = a * atanf(u / a);
    float u_ = lamda;

    float v_;
    if ( fabs(lamda) > 1E-7)
        v_ = atanf(v * sinf(lamda) / (b * a * tanf(lamda/a)));
    else
        v_ = atanf(v / b);

    float cosv = cosf(v_);
    float y_ = cosv * sinf(u_);
    float x_ = sinf(v_);
    float z_ = cosv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void MercatorProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    u = scale * u_;
    v = scale * logf( tanf( (float)(CV_PI/4) + v_/2 ) );
}

inline
void MercatorProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float v_ = atanf( sinhf(v) );
    float u_ = u;

    float cosv = cosf(v_);
    float x_ = cosv * sinf(u_);
    float y_ = sinf(v_);
    float z_ = cosv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void TransverseMercatorProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    float B = cosf(v_) * sinf(u_);

    u = scale / 2 * logf( (1+B) / (1-B) );
    v = scale * atan2f(tanf(v_), cosf(u_));
}

inline
void TransverseMercatorProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float v_ = asinf( sinf(v) / coshf(u) );
    float u_ = atan2f( sinhf(u), cos(v) );

    float cosv = cosf(v_);
    float x_ = cosv * sinf(u_);
    float y_ = sinf(v_);
    float z_ = cosv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void SphericalPortraitProjector::mapForward(float x, float y, float &u0, float &v0)
{
    float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float x_ = y0_;
    float y_ = x0_;
    float u, v;

    u = scale * atan2f(x_, z_);
    v = scale * (static_cast<float>(CV_PI) - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)));

    u0 = -u;//v;
    v0 = v;//u;
}


inline
void SphericalPortraitProjector::mapBackward(float u0, float v0, float &x, float &y)
{
    float u, v;
    u = -u0;//v0;
    v = v0;//u0;

    u /= scale;
    v /= scale;

    float sinv = sinf(static_cast<float>(CV_PI) - v);
    float x0_ = sinv * sinf(u);
    float y0_ = cosf(static_cast<float>(CV_PI) - v);
    float z_ = sinv * cosf(u);

    float x_ = y0_;
    float y_ = x0_;

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void CylindricalPortraitProjector::mapForward(float x, float y, float &u0, float &v0)
{
    float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_  = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float x_ = y0_;
    float y_ = x0_;
    float u, v;

    u = scale * atan2f(x_, z_);
    v = scale * y_ / sqrtf(x_ * x_ + z_ * z_);

    u0 = -u;//v;
    v0 = v;//u;
}


inline
void CylindricalPortraitProjector::mapBackward(float u0, float v0, float &x, float &y)
{
    float u, v;
    u = -u0;//v0;
    v = v0;//u0;

    u /= scale;
    v /= scale;

    float x0_ = sinf(u);
    float y0_ = v;
    float z_  = cosf(u);

    float x_ = y0_;
    float y_ = x0_;

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void PlanePortraitProjector::mapForward(float x, float y, float &u0, float &v0)
{
    float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_  = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float x_ = y0_;
    float y_ = x0_;

    x_ = t[0] + x_ / z_ * (1 - t[2]);
    y_ = t[1] + y_ / z_ * (1 - t[2]);

    float u,v;
    u = scale * x_;
    v = scale * y_;

    u0 = -u;
    v0 = v;
}


inline
void PlanePortraitProjector::mapBackward(float u0, float v0, float &x, float &y)
{
    float u, v;
    u = -u0;
    v = v0;

    u = u / scale - t[0];
    v = v / scale - t[1];

    float z;
    x = k_rinv[0] * v + k_rinv[1] * u + k_rinv[2] * (1 - t[2]);
    y = k_rinv[3] * v + k_rinv[4] * u + k_rinv[5] * (1 - t[2]);
    z = k_rinv[6] * v + k_rinv[7] * u + k_rinv[8] * (1 - t[2]);

    x /= z;
    y /= z;
}


} // namespace detail
} // namespace cv

a  
Kai Westerkamp committed
765
#endif // __OPENCV_STITCHING_WARPERS_INL_HPP__