bgfg_gaussmix.cpp 48.8 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

/////////////////////////////////////// MOG model //////////////////////////////////////////

static void CV_CDECL
icvReleaseGaussianBGModel( CvGaussBGModel** bg_model )
{
    if( !bg_model )
        CV_Error( CV_StsNullPtr, "" );

    if( *bg_model )
    {
        delete (cv::BackgroundSubtractorMOG*)((*bg_model)->mog);
        cvReleaseImage( &(*bg_model)->background );
        cvReleaseImage( &(*bg_model)->foreground );
        memset( *bg_model, 0, sizeof(**bg_model) );
        delete *bg_model;
        *bg_model = 0;
    }
}


static int CV_CDECL
icvUpdateGaussianBGModel( IplImage* curr_frame, CvGaussBGModel*  bg_model, double learningRate )
{
    cv::Mat image = cv::cvarrToMat(curr_frame), mask = cv::cvarrToMat(bg_model->foreground);

    cv::BackgroundSubtractorMOG* mog = (cv::BackgroundSubtractorMOG*)(bg_model->mog);
    CV_Assert(mog != 0);

    (*mog)(image, mask, learningRate);
    bg_model->countFrames++;

    return 0;
}

CV_IMPL CvBGStatModel*
cvCreateGaussianBGModel( IplImage* first_frame, CvGaussBGStatModelParams* parameters )
{
    CvGaussBGStatModelParams params;

    CV_Assert( CV_IS_IMAGE(first_frame) );

    //init parameters
    if( parameters == NULL )
    {                        // These constants are defined in cvaux/include/cvaux.h
        params.win_size      = CV_BGFG_MOG_WINDOW_SIZE;
        params.bg_threshold  = CV_BGFG_MOG_BACKGROUND_THRESHOLD;

        params.std_threshold = CV_BGFG_MOG_STD_THRESHOLD;
        params.weight_init   = CV_BGFG_MOG_WEIGHT_INIT;

        params.variance_init = CV_BGFG_MOG_SIGMA_INIT*CV_BGFG_MOG_SIGMA_INIT;
        params.minArea       = CV_BGFG_MOG_MINAREA;
        params.n_gauss       = CV_BGFG_MOG_NGAUSSIANS;
    }
    else
        params = *parameters;

    CvGaussBGModel* bg_model = new CvGaussBGModel;
    memset( bg_model, 0, sizeof(*bg_model) );
    bg_model->type = CV_BG_MODEL_MOG;
    bg_model->release = (CvReleaseBGStatModel)icvReleaseGaussianBGModel;
    bg_model->update = (CvUpdateBGStatModel)icvUpdateGaussianBGModel;

    bg_model->params = params;

    cv::BackgroundSubtractorMOG* mog =
        new cv::BackgroundSubtractorMOG(params.win_size,
                                        params.n_gauss,
                                        params.bg_threshold,
                                        params.variance_init);

    bg_model->mog = mog;

    CvSize sz = cvGetSize(first_frame);
    bg_model->background = cvCreateImage(sz, IPL_DEPTH_8U, first_frame->nChannels);
    bg_model->foreground = cvCreateImage(sz, IPL_DEPTH_8U, 1);

    bg_model->countFrames = 0;

    icvUpdateGaussianBGModel( first_frame, bg_model, 1 );

    return (CvBGStatModel*)bg_model;
}


//////////////////////////////////////////// MOG2 //////////////////////////////////////////////

/*M///////////////////////////////////////////////////////////////////////////////////////
 //
 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 //
 //  By downloading, copying, installing or using the software you agree to this license.
 //  If you do not agree to this license, do not download, install,
 //  copy or use the software.
 //
 //
 //                        Intel License Agreement
 //
 // Copyright (C) 2000, Intel Corporation, all rights reserved.
 // Third party copyrights are property of their respective owners.
 //
 // Redistribution and use in source and binary forms, with or without modification,
 // are permitted provided that the following conditions are met:
 //
 //   * Redistribution's of source code must retain the above copyright notice,
 //     this list of conditions and the following disclaimer.
 //
 //   * Redistribution's in binary form must reproduce the above copyright notice,
 //     this list of conditions and the following disclaimer in the documentation
 //     and/or other materials provided with the distribution.
 //
 //   * The name of Intel Corporation may not be used to endorse or promote products
 //     derived from this software without specific prior written permission.
 //
 // This software is provided by the copyright holders and contributors "as is" and
 // any express or implied warranties, including, but not limited to, the implied
 // warranties of merchantability and fitness for a particular purpose are disclaimed.
 // In no event shall the Intel Corporation or contributors be liable for any direct,
 // indirect, incidental, special, exemplary, or consequential damages
 // (including, but not limited to, procurement of substitute goods or services;
 // loss of use, data, or profits; or business interruption) however caused
 // and on any theory of liability, whether in contract, strict liability,
 // or tort (including negligence or otherwise) arising in any way out of
 // the use of this software, even if advised of the possibility of such damage.
 //
 //M*/

/*//Implementation of the Gaussian mixture model background subtraction from:
 //
 //"Improved adaptive Gausian mixture model for background subtraction"
 //Z.Zivkovic
 //International Conference Pattern Recognition, UK, August, 2004
 //http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
 //The code is very fast and performs also shadow detection.
 //Number of Gausssian components is adapted per pixel.
 //
 // and
 //
 //"Efficient Adaptive Density Estimapion per Image Pixel for the Task of Background Subtraction"
 //Z.Zivkovic, F. van der Heijden
 //Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006.
 //
 //The algorithm similar to the standard Stauffer&Grimson algorithm with
 //additional selection of the number of the Gaussian components based on:
 //
 //"Recursive unsupervised learning of finite mixture models "
 //Z.Zivkovic, F.van der Heijden
 //IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.5, pages 651-656, 2004
 //http://www.zoranz.net/Publications/zivkovic2004PAMI.pdf
 //
 //
 //Example usage with as cpp class
 // BackgroundSubtractorMOG2 bg_model;
 //For each new image the model is updates using:
 // bg_model(img, fgmask);
 //
 //Example usage as part of the CvBGStatModel:
 // CvBGStatModel* bg_model = cvCreateGaussianBGModel2( first_frame );
 //
 // //update for each frame
 // cvUpdateBGStatModel( tmp_frame, bg_model );//segmentation result is in bg_model->foreground
 //
 // //release at the program termination
 // cvReleaseBGStatModel( &bg_model );
 //
 //Author: Z.Zivkovic, www.zoranz.net
 //Date: 7-April-2011, Version:1.0
 ///////////*/

#include "precomp.hpp"


/*
 Interface of Gaussian mixture algorithm from:

 "Improved adaptive Gausian mixture model for background subtraction"
 Z.Zivkovic
 International Conference Pattern Recognition, UK, August, 2004
 http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf

 Advantages:
 -fast - number of Gausssian components is constantly adapted per pixel.
 -performs also shadow detection (see bgfg_segm_test.cpp example)

 */


#define CV_BG_MODEL_MOG2            3                 /* "Mixture of Gaussians 2".  */


/* default parameters of gaussian background detection algorithm */
#define CV_BGFG_MOG2_STD_THRESHOLD            4.0f     /* lambda=2.5 is 99% */
#define CV_BGFG_MOG2_WINDOW_SIZE              500      /* Learning rate; alpha = 1/CV_GBG_WINDOW_SIZE */
#define CV_BGFG_MOG2_BACKGROUND_THRESHOLD     0.9f     /* threshold sum of weights for background test */
#define CV_BGFG_MOG2_STD_THRESHOLD_GENERATE   3.0f     /* lambda=2.5 is 99% */
#define CV_BGFG_MOG2_NGAUSSIANS               5        /* = K = number of Gaussians in mixture */
#define CV_BGFG_MOG2_VAR_INIT                 15.0f    /* initial variance for new components*/
#define CV_BGFG_MOG2_VAR_MIN                    4.0f
#define CV_BGFG_MOG2_VAR_MAX                      5*CV_BGFG_MOG2_VAR_INIT
#define CV_BGFG_MOG2_MINAREA                  15.0f    /* for postfiltering */

/* additional parameters */
#define CV_BGFG_MOG2_CT                               0.05f     /* complexity reduction prior constant 0 - no reduction of number of components*/
#define CV_BGFG_MOG2_SHADOW_VALUE             127       /* value to use in the segmentation mask for shadows, sot 0 not to do shadow detection*/
#define CV_BGFG_MOG2_SHADOW_TAU               0.5f      /* Tau - shadow threshold, see the paper for explanation*/

typedef struct CvGaussBGStatModel2Params
{
    //image info
    int nWidth;
    int nHeight;
    int nND;//number of data dimensions (image channels)

    bool bPostFiltering;//defult 1 - do postfiltering - will make shadow detection results also give value 255
    double  minArea; // for postfiltering

    bool bInit;//default 1, faster updates at start

    /////////////////////////
    //very important parameters - things you will change
    ////////////////////////
    float fAlphaT;
    //alpha - speed of update - if the time interval you want to average over is T
    //set alpha=1/T. It is also usefull at start to make T slowly increase
    //from 1 until the desired T
    float fTb;
    //Tb - threshold on the squared Mahalan. dist. to decide if it is well described
    //by the background model or not. Related to Cthr from the paper.
    //This does not influence the update of the background. A typical value could be 4 sigma
    //and that is Tb=4*4=16;

    /////////////////////////
    //less important parameters - things you might change but be carefull
    ////////////////////////
    float fTg;
    //Tg - threshold on the squared Mahalan. dist. to decide
    //when a sample is close to the existing components. If it is not close
    //to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
    //Smaller Tg leads to more generated components and higher Tg might make
    //lead to small number of components but they can grow too large
    float fTB;//1-cf from the paper
    //TB - threshold when the component becomes significant enough to be included into
    //the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
    //For alpha=0.001 it means that the mode should exist for approximately 105 frames before
    //it is considered foreground
    float fVarInit;
    float fVarMax;
    float fVarMin;
    //initial standard deviation  for the newly generated components.
    //It will will influence the speed of adaptation. A good guess should be made.
    //A simple way is to estimate the typical standard deviation from the images.
    //I used here 10 as a reasonable value
    float fCT;//CT - complexity reduction prior
    //this is related to the number of samples needed to accept that a component
    //actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
    //the standard Stauffer&Grimson algorithm (maybe not exact but very similar)

    //even less important parameters
    int nM;//max number of modes - const - 4 is usually enough

    //shadow detection parameters
    bool bShadowDetection;//default 1 - do shadow detection
    unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result
    float fTau;
    // Tau - shadow threshold. The shadow is detected if the pixel is darker
    //version of the background. Tau is a threshold on how much darker the shadow can be.
    //Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
    //See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
} CvGaussBGStatModel2Params;

#define CV_BGFG_MOG2_NDMAX 3

typedef struct CvPBGMMGaussian
{
    float weight;
    float mean[CV_BGFG_MOG2_NDMAX];
    float variance;
}CvPBGMMGaussian;

typedef struct CvGaussBGStatModel2Data
{
    CvPBGMMGaussian* rGMM; //array for the mixture of Gaussians
    unsigned char* rnUsedModes;//number of Gaussian components per pixel (maximum 255)
} CvGaussBGStatModel2Data;


/*
 //only foreground image is updated
 //no filtering included
 typedef struct CvGaussBGModel2
 {
 CV_BG_STAT_MODEL_FIELDS();
 CvGaussBGStatModel2Params params;
 CvGaussBGStatModel2Data   data;
 int                       countFrames;
 } CvGaussBGModel2;

 CVAPI(CvBGStatModel*) cvCreateGaussianBGModel2( IplImage* first_frame,
 CvGaussBGStatModel2Params* params CV_DEFAULT(NULL) );
 */

//shadow detection performed per pixel
// should work for rgb data, could be usefull for gray scale and depth data as well
//  See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
CV_INLINE int _icvRemoveShadowGMM(float* data, int nD,
                                  unsigned char nModes,
                                  CvPBGMMGaussian* pGMM,
                                  float m_fTb,
                                  float m_fTB,
                                  float m_fTau)
{
    float tWeight = 0;
    float numerator, denominator;
    // check all the components  marked as background:
    for (int iModes=0;iModes<nModes;iModes++)
    {

        CvPBGMMGaussian g=pGMM[iModes];

        numerator = 0.0f;
        denominator = 0.0f;
        for (int iD=0;iD<nD;iD++)
        {
            numerator   += data[iD]  * g.mean[iD];
            denominator += g.mean[iD]* g.mean[iD];
        }

        // no division by zero allowed
        if (denominator == 0)
        {
            return 0;
        };
        float a = numerator / denominator;

        // if tau < a < 1 then also check the color distortion
        if ((a <= 1) && (a >= m_fTau))
        {

            float dist2a=0.0f;

            for (int iD=0;iD<nD;iD++)
            {
                float dD= a*g.mean[iD] - data[iD];
                dist2a += (dD*dD);
            }

            if (dist2a<m_fTb*g.variance*a*a)
            {
                return 2;
            }
        };

        tWeight += g.weight;
        if (tWeight > m_fTB)
        {
            return 0;
        };
    };
    return 0;
}

//update GMM - the base update function performed per pixel
//
//"Efficient Adaptive Density Estimapion per Image Pixel for the Task of Background Subtraction"
//Z.Zivkovic, F. van der Heijden
//Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006.
//
//The algorithm similar to the standard Stauffer&Grimson algorithm with
//additional selection of the number of the Gaussian components based on:
//
//"Recursive unsupervised learning of finite mixture models "
//Z.Zivkovic, F.van der Heijden
//IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.5, pages 651-656, 2004
//http://www.zoranz.net/Publications/zivkovic2004PAMI.pdf

#if defined(__GNUC__) && (__GNUC__ == 4) && (__GNUC_MINOR__ == 8)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
#endif

CV_INLINE int _icvUpdateGMM(float* data, int nD,
                            unsigned char* pModesUsed,
                            CvPBGMMGaussian* pGMM,
                            int m_nM,
                            float m_fAlphaT,
                            float m_fTb,
                            float m_fTB,
                            float m_fTg,
                            float m_fVarInit,
                            float m_fVarMax,
                            float m_fVarMin,
                            float m_fPrune)
{
    //calculate distances to the modes (+ sort)
    //here we need to go in descending order!!!
    bool bBackground=0;//return value -> true - the pixel classified as background

    //internal:
    bool bFitsPDF=0;//if it remains zero a new GMM mode will be added
    float m_fOneMinAlpha=1-m_fAlphaT;
    unsigned char nModes=*pModesUsed;//current number of modes in GMM
    float totalWeight=0.0f;

    //////
    //go through all modes
    int iMode=0;
    CvPBGMMGaussian* pGauss=pGMM;
    for (;iMode<nModes;iMode++,pGauss++)
    {
        float weight = pGauss->weight;//need only weight if fit is found
        weight=m_fOneMinAlpha*weight+m_fPrune;

        ////
        //fit not found yet
        if (!bFitsPDF)
        {
            //check if it belongs to some of the remaining modes
            float var=pGauss->variance;

            //calculate difference and distance
            float dist2=0.0f;
#if (CV_BGFG_MOG2_NDMAX==1)
            float dData=pGauss->mean[0]-data[0];
            dist2=dData*dData;
#else
            float dData[CV_BGFG_MOG2_NDMAX];

            for (int iD=0;iD<nD;iD++)
            {
                dData[iD]=pGauss->mean[iD]-data[iD];
                dist2+=dData[iD]*dData[iD];
            }
#endif
            //background? - m_fTb - usually larger than m_fTg
            if ((totalWeight<m_fTB)&&(dist2<m_fTb*var))
                bBackground=1;

            //check fit
            if (dist2<m_fTg*var)
            {
                /////
                //belongs to the mode - bFitsPDF becomes 1
                bFitsPDF=1;

                //update distribution

                //update weight
                weight+=m_fAlphaT;

                float k = m_fAlphaT/weight;

                //update mean
#if (CV_BGFG_MOG2_NDMAX==1)
                pGauss->mean[0]-=k*dData;
#else
                for (int iD=0;iD<nD;iD++)
                {
                    pGauss->mean[iD]-=k*dData[iD];
                }
#endif

                //update variance
                float varnew = var + k*(dist2-var);
                //limit the variance
                pGauss->variance = MIN(m_fVarMax,MAX(varnew,m_fVarMin));

                //sort
                //all other weights are at the same place and
                //only the matched (iModes) is higher -> just find the new place for it
                for (int iLocal = iMode;iLocal>0;iLocal--)
                {
                    //check one up
                    if (weight < (pGMM[iLocal-1].weight))
                    {
                        break;
                    }
                    else
                    {
                        //swap one up
                        CvPBGMMGaussian temp = pGMM[iLocal];
                        pGMM[iLocal] = pGMM[iLocal-1];
                        pGMM[iLocal-1] = temp;
                        pGauss--;
                    }
                }
                //belongs to the mode - bFitsPDF becomes 1
                /////
            }
        }//!bFitsPDF)

        //check prune
        if (weight<-m_fPrune)
        {
            weight=0.0;
            nModes--;
        }

        pGauss->weight=weight;//update weight by the calculated value
        totalWeight+=weight;
    }
    //go through all modes
    //////

    //renormalize weights
    for (iMode = 0; iMode < nModes; iMode++)
    {
        pGMM[iMode].weight = pGMM[iMode].weight/totalWeight;
    }

    //make new mode if needed and exit
    if (!bFitsPDF)
    {
        if (nModes==m_nM)
        {
            //replace the weakest
            pGauss=pGMM+m_nM-1;
        }
        else
        {
            //add a new one
            pGauss=pGMM+nModes;
            nModes++;
        }

        if (nModes==1)
        {
            pGauss->weight=1;
        }
        else
        {
            pGauss->weight=m_fAlphaT;

            //renormalize all weights
            for (iMode = 0; iMode < nModes-1; iMode++)
            {
                pGMM[iMode].weight *=m_fOneMinAlpha;
            }
        }

        //init
        memcpy(pGauss->mean,data,nD*sizeof(float));
        pGauss->variance=m_fVarInit;

        //sort
        //find the new place for it
        for (int iLocal = nModes-1;iLocal>0;iLocal--)
        {
            //check one up
            if (m_fAlphaT < (pGMM[iLocal-1].weight))
            {
                break;
            }
            else
            {
                //swap one up
                CvPBGMMGaussian temp = pGMM[iLocal];
                pGMM[iLocal] = pGMM[iLocal-1];
                pGMM[iLocal-1] = temp;
            }
        }
    }

    //set the number of modes
    *pModesUsed=nModes;

    return bBackground;
}

#if defined(__GNUC__) && (__GNUC__ == 4) && (__GNUC_MINOR__ == 8)
# pragma GCC diagnostic pop
#endif

// a bit more efficient implementation for common case of 3 channel (rgb) images
CV_INLINE int _icvUpdateGMM_C3(float r,float g, float b,
                               unsigned char* pModesUsed,
                               CvPBGMMGaussian* pGMM,
                               int m_nM,
                               float m_fAlphaT,
                               float m_fTb,
                               float m_fTB,
                               float m_fTg,
                               float m_fVarInit,
                               float m_fVarMax,
                               float m_fVarMin,
                               float m_fPrune)
{
    //calculate distances to the modes (+ sort)
    //here we need to go in descending order!!!
    bool bBackground=0;//return value -> true - the pixel classified as background

    //internal:
    bool bFitsPDF=0;//if it remains zero a new GMM mode will be added
    float m_fOneMinAlpha=1-m_fAlphaT;
    unsigned char nModes=*pModesUsed;//current number of modes in GMM
    float totalWeight=0.0f;

    //////
    //go through all modes
    int iMode=0;
    CvPBGMMGaussian* pGauss=pGMM;
    for (;iMode<nModes;iMode++,pGauss++)
    {
        float weight = pGauss->weight;//need only weight if fit is found
        weight=m_fOneMinAlpha*weight+m_fPrune;

        ////
        //fit not found yet
        if (!bFitsPDF)
        {
            //check if it belongs to some of the remaining modes
            float var=pGauss->variance;

            //calculate difference and distance
            float muR = pGauss->mean[0];
            float muG = pGauss->mean[1];
            float muB = pGauss->mean[2];

            float dR=muR - r;
            float dG=muG - g;
            float dB=muB - b;

            float dist2=(dR*dR+dG*dG+dB*dB);

            //background? - m_fTb - usually larger than m_fTg
            if ((totalWeight<m_fTB)&&(dist2<m_fTb*var))
                bBackground=1;

            //check fit
            if (dist2<m_fTg*var)
            {
                /////
                //belongs to the mode - bFitsPDF becomes 1
                bFitsPDF=1;

                //update distribution

                //update weight
                weight+=m_fAlphaT;

                float k = m_fAlphaT/weight;

                //update mean
                pGauss->mean[0] = muR - k*(dR);
                pGauss->mean[1] = muG - k*(dG);
                pGauss->mean[2] = muB - k*(dB);

                //update variance
                float varnew = var + k*(dist2-var);
                //limit the variance
                pGauss->variance = MIN(m_fVarMax,MAX(varnew,m_fVarMin));

                //sort
                //all other weights are at the same place and
                //only the matched (iModes) is higher -> just find the new place for it
                for (int iLocal = iMode;iLocal>0;iLocal--)
                {
                    //check one up
                    if (weight < (pGMM[iLocal-1].weight))
                    {
                        break;
                    }
                    else
                    {
                        //swap one up
                        CvPBGMMGaussian temp = pGMM[iLocal];
                        pGMM[iLocal] = pGMM[iLocal-1];
                        pGMM[iLocal-1] = temp;
                        pGauss--;
                    }
                }
                //belongs to the mode - bFitsPDF becomes 1
                /////
            }

        }//!bFitsPDF)

        //check prunning
        if (weight<-m_fPrune)
        {
            weight=0.0;
            nModes--;
        }

        pGauss->weight=weight;
        totalWeight+=weight;
    }
    //go through all modes
    //////

    //renormalize weights
    for (iMode = 0; iMode < nModes; iMode++)
    {
        pGMM[iMode].weight = pGMM[iMode].weight/totalWeight;
    }

    //make new mode if needed and exit
    if (!bFitsPDF)
    {
        if (nModes==m_nM)
        {
            //replace the weakest
            pGauss=pGMM+m_nM-1;
        }
        else
        {
            //add a new one
            pGauss=pGMM+nModes;
            nModes++;
        }

        if (nModes==1)
        {
            pGauss->weight=1;
        }
        else
        {
            pGauss->weight=m_fAlphaT;

            //renormalize all weights
            for (iMode = 0; iMode < nModes-1; iMode++)
            {
                pGMM[iMode].weight *=m_fOneMinAlpha;
            }
        }

        //init
        pGauss->mean[0]=r;
        pGauss->mean[1]=g;
        pGauss->mean[2]=b;

        pGauss->variance=m_fVarInit;

        //sort
        //find the new place for it
        for (int iLocal = nModes-1;iLocal>0;iLocal--)
        {
            //check one up
            if (m_fAlphaT < (pGMM[iLocal-1].weight))
            {
                break;
            }
            else
            {
                //swap one up
                CvPBGMMGaussian temp = pGMM[iLocal];
                pGMM[iLocal] = pGMM[iLocal-1];
                pGMM[iLocal-1] = temp;
            }
        }
    }

    //set the number of modes
    *pModesUsed=nModes;

    return bBackground;
}

//the main function to update the background model
static void icvUpdatePixelBackgroundGMM2( const CvArr* srcarr, CvArr* dstarr ,
                                  CvPBGMMGaussian *pGMM,
                                  unsigned char *pUsedModes,
                                  //CvGaussBGStatModel2Params* pGMMPar,
                                  int nM,
                                  float fTb,
                                  float fTB,
                                  float fTg,
                                  float fVarInit,
                                  float fVarMax,
                                  float fVarMin,
                                  float fCT,
                                  float fTau,
                                  bool bShadowDetection,
                                  unsigned char  nShadowDetection,
                                  float alpha)
{
    CvMat sstub, *src = cvGetMat(srcarr, &sstub);
    CvMat dstub, *dst = cvGetMat(dstarr, &dstub);
    CvSize size = cvGetMatSize(src);
    int nD=CV_MAT_CN(src->type);

    //reshape if possible
    if( CV_IS_MAT_CONT(src->type & dst->type) )
    {
        size.width *= size.height;
        size.height = 1;
    }

    int x, y;
    float data[CV_BGFG_MOG2_NDMAX];
    float prune=-alpha*fCT;

    //general nD

    if (nD!=3)
    {
        switch (CV_MAT_DEPTH(src->type))
        {
            case CV_8U:
                for( y = 0; y < size.height; y++ )
                {
                    uchar* sptr = src->data.ptr + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
                        //update GMM model
                        int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
                    }
                }
                break;
            case CV_16S:
                for( y = 0; y < size.height; y++ )
                {
                    short* sptr = src->data.s + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
                        //update GMM model
                        int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
                    }
                }
                break;
            case CV_16U:
                for( y = 0; y < size.height; y++ )
                {
                    unsigned short* sptr = (unsigned short*) (src->data.s + src->step*y);
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
                        //update GMM model
                        int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
                    }
                }
                break;
            case CV_32S:
                for( y = 0; y < size.height; y++ )
                {
                    int* sptr = src->data.i + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
                        //update GMM model
                        int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
                    }
                }
                break;
            case CV_32F:
                for( y = 0; y < size.height; y++ )
                {
                    float* sptr = src->data.fl + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //update GMM model
                        int result = _icvUpdateGMM(sptr,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
                    }
                }
                break;
            case CV_64F:
                for( y = 0; y < size.height; y++ )
                {
                    double* sptr = src->data.db + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
                        //update GMM model
                        int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
                    }
                }
                break;
        }
    }else ///if (nD==3) - a bit faster
    {
        switch (CV_MAT_DEPTH(src->type))
        {
            case CV_8U:
                for( y = 0; y < size.height; y++ )
                {
                    uchar* sptr = src->data.ptr + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
                        //update GMM model
                        int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
                    }
                }
                break;
            case CV_16S:
                for( y = 0; y < size.height; y++ )
                {
                    short* sptr = src->data.s + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
                        //update GMM model
                        int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
                    }
                }
                break;
            case CV_16U:
                for( y = 0; y < size.height; y++ )
                {
                    unsigned short* sptr = (unsigned short*) src->data.s + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
                        //update GMM model
                        int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
                    }
                }
                break;
            case CV_32S:
                for( y = 0; y < size.height; y++ )
                {
                    int* sptr = src->data.i + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
                        //update GMM model
                        int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
                    }
                }
                break;
            case CV_32F:
                for( y = 0; y < size.height; y++ )
                {
                    float* sptr = src->data.fl + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //update GMM model
                        int result = _icvUpdateGMM_C3(sptr[0],sptr[1],sptr[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
                    }
                }
                break;
            case CV_64F:
                for( y = 0; y < size.height; y++ )
                {
                    double* sptr = src->data.db + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
                        //update GMM model
                        int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
                    }
                }
                break;
        }
    }//a bit faster for nD=3;
}


//only foreground image is updated
//no filtering included
typedef struct CvGaussBGModel2
{
    CV_BG_STAT_MODEL_FIELDS();
    CvGaussBGStatModel2Params params;
    CvGaussBGStatModel2Data   data;
    int                       countFrames;
} CvGaussBGModel2;

CVAPI(CvBGStatModel*) cvCreateGaussianBGModel2( IplImage* first_frame,
                                               CvGaussBGStatModel2Params* params CV_DEFAULT(NULL) );

//////////////////////////////////////////////
//implementation as part of the CvBGStatModel
static void CV_CDECL icvReleaseGaussianBGModel2( CvGaussBGModel2** bg_model );
static int CV_CDECL icvUpdateGaussianBGModel2( IplImage* curr_frame, CvGaussBGModel2*  bg_model );


CV_IMPL CvBGStatModel*
cvCreateGaussianBGModel2( IplImage* first_frame, CvGaussBGStatModel2Params* parameters )
{
    CvGaussBGModel2* bg_model = 0;
    int w,h;

    CV_FUNCNAME( "cvCreateGaussianBGModel2" );

    __BEGIN__;

    CvGaussBGStatModel2Params params;

    if( !CV_IS_IMAGE(first_frame) )
        CV_ERROR( CV_StsBadArg, "Invalid or NULL first_frame parameter" );

    if( first_frame->nChannels>CV_BGFG_MOG2_NDMAX )
        CV_ERROR( CV_StsBadArg, "Maxumum number of channels in the image is excedded (change CV_BGFG_MOG2_MAXBANDS constant)!" );


    CV_CALL( bg_model = (CvGaussBGModel2*)cvAlloc( sizeof(*bg_model) ));
    memset( bg_model, 0, sizeof(*bg_model) );
    bg_model->type    = CV_BG_MODEL_MOG2;
    bg_model->release = (CvReleaseBGStatModel) icvReleaseGaussianBGModel2;
    bg_model->update  = (CvUpdateBGStatModel)  icvUpdateGaussianBGModel2;

    //init parameters
    if( parameters == NULL )
    {
        memset(&params, 0, sizeof(params));

        // These constants are defined in cvaux/include/cvaux.h
        params.bShadowDetection = 1;
        params.bPostFiltering=0;
        params.minArea=CV_BGFG_MOG2_MINAREA;

        //set parameters
        // K - max number of Gaussians per pixel
        params.nM = CV_BGFG_MOG2_NGAUSSIANS;//4;
        // Tb - the threshold - n var
        //pGMM->fTb = 4*4;
        params.fTb = CV_BGFG_MOG2_STD_THRESHOLD*CV_BGFG_MOG2_STD_THRESHOLD;
        // Tbf - the threshold
        //pGMM->fTB = 0.9f;//1-cf from the paper
        params.fTB = CV_BGFG_MOG2_BACKGROUND_THRESHOLD;
        // Tgenerate - the threshold
        params.fTg = CV_BGFG_MOG2_STD_THRESHOLD_GENERATE*CV_BGFG_MOG2_STD_THRESHOLD_GENERATE;//update the mode or generate new
        //pGMM->fSigma= 11.0f;//sigma for the new mode
        params.fVarInit = CV_BGFG_MOG2_VAR_INIT;
        params.fVarMax = CV_BGFG_MOG2_VAR_MAX;
        params.fVarMin = CV_BGFG_MOG2_VAR_MIN;
        // alpha - the learning factor
        params.fAlphaT = 1.0f/CV_BGFG_MOG2_WINDOW_SIZE;//0.003f;
        // complexity reduction prior constant
        params.fCT = CV_BGFG_MOG2_CT;//0.05f;

        //shadow
        // Shadow detection
        params.nShadowDetection = (unsigned char)CV_BGFG_MOG2_SHADOW_VALUE;//value 0 to turn off
        params.fTau = CV_BGFG_MOG2_SHADOW_TAU;//0.5f;// Tau - shadow threshold
    }
    else
    {
        params = *parameters;
    }

    bg_model->params = params;

    //image data
    w = first_frame->width;
    h = first_frame->height;

    bg_model->params.nWidth = w;
    bg_model->params.nHeight = h;

    bg_model->params.nND = first_frame->nChannels;


    //allocate GMM data

    //GMM for each pixel
    bg_model->data.rGMM = (CvPBGMMGaussian*) malloc(w*h * params.nM * sizeof(CvPBGMMGaussian));
    //used modes per pixel
    bg_model->data.rnUsedModes = (unsigned char* ) malloc(w*h);
    memset(bg_model->data.rnUsedModes,0,w*h);//no modes used

    //prepare storages
    CV_CALL( bg_model->background = cvCreateImage(cvSize(w,h), IPL_DEPTH_8U, first_frame->nChannels));
    CV_CALL( bg_model->foreground = cvCreateImage(cvSize(w,h), IPL_DEPTH_8U, 1));

    //for eventual filtering
    CV_CALL( bg_model->storage = cvCreateMemStorage());

    bg_model->countFrames = 0;

    __END__;

    if( cvGetErrStatus() < 0 )
    {
        CvBGStatModel* base_ptr = (CvBGStatModel*)bg_model;

        if( bg_model && bg_model->release )
            bg_model->release( &base_ptr );
        else
            cvFree( &bg_model );
        bg_model = 0;
    }

    return (CvBGStatModel*)bg_model;
}


static void CV_CDECL
icvReleaseGaussianBGModel2( CvGaussBGModel2** _bg_model )
{
    CV_FUNCNAME( "icvReleaseGaussianBGModel2" );

    __BEGIN__;

    if( !_bg_model )
        CV_ERROR( CV_StsNullPtr, "" );

    if( *_bg_model )
    {
        CvGaussBGModel2* bg_model = *_bg_model;

        free (bg_model->data.rGMM);
        free (bg_model->data.rnUsedModes);

        cvReleaseImage( &bg_model->background );
        cvReleaseImage( &bg_model->foreground );
        cvReleaseMemStorage(&bg_model->storage);
        memset( bg_model, 0, sizeof(*bg_model) );
        cvFree( _bg_model );
    }

    __END__;
}


static int CV_CDECL
icvUpdateGaussianBGModel2( IplImage* curr_frame, CvGaussBGModel2*  bg_model )
{
    //checks
    if ((curr_frame->height!=bg_model->params.nHeight)||(curr_frame->width!=bg_model->params.nWidth)||(curr_frame->nChannels!=bg_model->params.nND))
        CV_Error( CV_StsBadSize, "the image not the same size as the reserved GMM background model");

    float alpha=bg_model->params.fAlphaT;
    bg_model->countFrames++;

    //faster initial updates - increase value of alpha
    if (bg_model->params.bInit){
        float alphaInit=(1.0f/(2*bg_model->countFrames+1));
        if (alphaInit>alpha)
        {
            alpha = alphaInit;
        }
        else
        {
            bg_model->params.bInit = 0;
        }
    }

    //update background
    //icvUpdatePixelBackgroundGMM2( curr_frame, bg_model->foreground, bg_model->data.rGMM,bg_model->data.rnUsedModes,&(bg_model->params),alpha);
    icvUpdatePixelBackgroundGMM2( curr_frame, bg_model->foreground, bg_model->data.rGMM,bg_model->data.rnUsedModes,
                                 bg_model->params.nM,
                                 bg_model->params.fTb,
                                 bg_model->params.fTB,
                                 bg_model->params.fTg,
                                 bg_model->params.fVarInit,
                                 bg_model->params.fVarMax,
                                 bg_model->params.fVarMin,
                                 bg_model->params.fCT,
                                 bg_model->params.fTau,
                                 bg_model->params.bShadowDetection,
                                 bg_model->params.nShadowDetection,
                                 alpha);

    //foreground filtering
    if (bg_model->params.bPostFiltering==1)
    {
        int region_count = 0;
        CvSeq *first_seq = NULL, *prev_seq = NULL, *seq = NULL;


        //filter small regions
        cvClearMemStorage(bg_model->storage);

        cvMorphologyEx( bg_model->foreground, bg_model->foreground, 0, 0, CV_MOP_OPEN, 1 );
        cvMorphologyEx( bg_model->foreground, bg_model->foreground, 0, 0, CV_MOP_CLOSE, 1 );

        cvFindContours( bg_model->foreground, bg_model->storage, &first_seq, sizeof(CvContour), CV_RETR_LIST );
        for( seq = first_seq; seq; seq = seq->h_next )
        {
            CvContour* cnt = (CvContour*)seq;
            if( cnt->rect.width * cnt->rect.height < bg_model->params.minArea )
            {
                //delete small contour
                prev_seq = seq->h_prev;
                if( prev_seq )
                {
                    prev_seq->h_next = seq->h_next;
                    if( seq->h_next ) seq->h_next->h_prev = prev_seq;
                }
                else
                {
                    first_seq = seq->h_next;
                    if( seq->h_next ) seq->h_next->h_prev = NULL;
                }
            }
            else
            {
                region_count++;
            }
        }
        bg_model->foreground_regions = first_seq;
        cvZero(bg_model->foreground);
        cvDrawContours(bg_model->foreground, first_seq, CV_RGB(0, 0, 255), CV_RGB(0, 0, 255), 10, -1);

        return region_count;
    }

    return 1;
}

/* End of file. */