bgfg_mog.cpp 10.8 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

#if !defined HAVE_CUDA || defined(CUDA_DISABLER)

cv::gpu::MOG_GPU::MOG_GPU(int) { throw_nogpu(); }
void cv::gpu::MOG_GPU::initialize(cv::Size, int) { throw_nogpu(); }
void cv::gpu::MOG_GPU::operator()(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, float, Stream&) { throw_nogpu(); }
void cv::gpu::MOG_GPU::getBackgroundImage(GpuMat&, Stream&) const { throw_nogpu(); }
void cv::gpu::MOG_GPU::release() {}

cv::gpu::MOG2_GPU::MOG2_GPU(int) { throw_nogpu(); }
void cv::gpu::MOG2_GPU::initialize(cv::Size, int) { throw_nogpu(); }
void cv::gpu::MOG2_GPU::operator()(const GpuMat&, GpuMat&, float, Stream&) { throw_nogpu(); }
void cv::gpu::MOG2_GPU::getBackgroundImage(GpuMat&, Stream&) const { throw_nogpu(); }
void cv::gpu::MOG2_GPU::release() {}

#else

namespace cv { namespace gpu { namespace device
{
    namespace mog
    {
        void mog_gpu(PtrStepSzb frame, int cn, PtrStepSzb fgmask, PtrStepSzf weight, PtrStepSzf sortKey, PtrStepSzb mean, PtrStepSzb var,
                     int nmixtures, float varThreshold, float learningRate, float backgroundRatio, float noiseSigma,
                     cudaStream_t stream);
        void getBackgroundImage_gpu(int cn, PtrStepSzf weight, PtrStepSzb mean, PtrStepSzb dst, int nmixtures, float backgroundRatio, cudaStream_t stream);

        void loadConstants(int nmixtures, float Tb, float TB, float Tg, float varInit, float varMin, float varMax, float tau, unsigned char shadowVal);
        void mog2_gpu(PtrStepSzb frame, int cn, PtrStepSzb fgmask, PtrStepSzb modesUsed, PtrStepSzf weight, PtrStepSzf variance, PtrStepSzb mean, float alphaT, float prune, bool detectShadows, cudaStream_t stream);
        void getBackgroundImage2_gpu(int cn, PtrStepSzb modesUsed, PtrStepSzf weight, PtrStepSzb mean, PtrStepSzb dst, cudaStream_t stream);
    }
}}}

namespace mog
{
    const int defaultNMixtures = 5;
    const int defaultHistory = 200;
    const float defaultBackgroundRatio = 0.7f;
    const float defaultVarThreshold = 2.5f * 2.5f;
    const float defaultNoiseSigma = 30.0f * 0.5f;
    const float defaultInitialWeight = 0.05f;
}

cv::gpu::MOG_GPU::MOG_GPU(int nmixtures) :
    frameSize_(0, 0), frameType_(0), nframes_(0)
{
    nmixtures_ = std::min(nmixtures > 0 ? nmixtures : mog::defaultNMixtures, 8);
    history = mog::defaultHistory;
    varThreshold = mog::defaultVarThreshold;
    backgroundRatio = mog::defaultBackgroundRatio;
    noiseSigma = mog::defaultNoiseSigma;
}

void cv::gpu::MOG_GPU::initialize(cv::Size frameSize, int frameType)
{
    CV_Assert(frameType == CV_8UC1 || frameType == CV_8UC3 || frameType == CV_8UC4);

    frameSize_ = frameSize;
    frameType_ = frameType;

    int ch = CV_MAT_CN(frameType);
    int work_ch = ch;

    // for each gaussian mixture of each pixel bg model we store
    // the mixture sort key (w/sum_of_variances), the mixture weight (w),
    // the mean (nchannels values) and
    // the diagonal covariance matrix (another nchannels values)

    weight_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1);
    sortKey_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1);
    mean_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch));
    var_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch));

    weight_.setTo(cv::Scalar::all(0));
    sortKey_.setTo(cv::Scalar::all(0));
    mean_.setTo(cv::Scalar::all(0));
    var_.setTo(cv::Scalar::all(0));

    nframes_ = 0;
}

void cv::gpu::MOG_GPU::operator()(const cv::gpu::GpuMat& frame, cv::gpu::GpuMat& fgmask, float learningRate, Stream& stream)
{
    using namespace cv::gpu::device::mog;

    CV_Assert(frame.depth() == CV_8U);

    int ch = frame.channels();
    int work_ch = ch;

    if (nframes_ == 0 || learningRate >= 1.0 || frame.size() != frameSize_ || work_ch != mean_.channels())
        initialize(frame.size(), frame.type());

    fgmask.create(frameSize_, CV_8UC1);

    ++nframes_;
    learningRate = learningRate >= 0.0f && nframes_ > 1 ? learningRate : 1.0f / std::min(nframes_, history);
    CV_Assert(learningRate >= 0.0f);

    mog_gpu(frame, ch, fgmask, weight_, sortKey_, mean_, var_, nmixtures_,
            varThreshold, learningRate, backgroundRatio, noiseSigma,
            StreamAccessor::getStream(stream));
}

void cv::gpu::MOG_GPU::getBackgroundImage(GpuMat& backgroundImage, Stream& stream) const
{
    using namespace cv::gpu::device::mog;

    backgroundImage.create(frameSize_, frameType_);

    getBackgroundImage_gpu(backgroundImage.channels(), weight_, mean_, backgroundImage, nmixtures_, backgroundRatio, StreamAccessor::getStream(stream));
}

void cv::gpu::MOG_GPU::release()
{
    frameSize_ = Size(0, 0);
    frameType_ = 0;
    nframes_ = 0;

    weight_.release();
    sortKey_.release();
    mean_.release();
    var_.release();
}

/////////////////////////////////////////////////////////////////
// MOG2

namespace mog2
{
    // default parameters of gaussian background detection algorithm
    const int defaultHistory = 500; // Learning rate; alpha = 1/defaultHistory2
    const float defaultVarThreshold = 4.0f * 4.0f;
    const int defaultNMixtures = 5; // maximal number of Gaussians in mixture
    const float defaultBackgroundRatio = 0.9f; // threshold sum of weights for background test
    const float defaultVarThresholdGen = 3.0f * 3.0f;
    const float defaultVarInit = 15.0f; // initial variance for new components
    const float defaultVarMax = 5.0f * defaultVarInit;
    const float defaultVarMin = 4.0f;

    // additional parameters
    const float defaultfCT = 0.05f; // complexity reduction prior constant 0 - no reduction of number of components
    const unsigned char defaultnShadowDetection = 127; // value to use in the segmentation mask for shadows, set 0 not to do shadow detection
    const float defaultfTau = 0.5f; // Tau - shadow threshold, see the paper for explanation
}

cv::gpu::MOG2_GPU::MOG2_GPU(int nmixtures) :
    frameSize_(0, 0), frameType_(0), nframes_(0)
{
    nmixtures_ = nmixtures > 0 ? nmixtures : mog2::defaultNMixtures;

    history = mog2::defaultHistory;
    varThreshold = mog2::defaultVarThreshold;
    bShadowDetection = true;

    backgroundRatio = mog2::defaultBackgroundRatio;
    fVarInit = mog2::defaultVarInit;
    fVarMax  = mog2::defaultVarMax;
    fVarMin = mog2::defaultVarMin;

    varThresholdGen = mog2::defaultVarThresholdGen;
    fCT = mog2::defaultfCT;
    nShadowDetection =  mog2::defaultnShadowDetection;
    fTau = mog2::defaultfTau;
}

void cv::gpu::MOG2_GPU::initialize(cv::Size frameSize, int frameType)
{
    using namespace cv::gpu::device::mog;

    CV_Assert(frameType == CV_8UC1 || frameType == CV_8UC3 || frameType == CV_8UC4);

    frameSize_ = frameSize;
    frameType_ = frameType;
    nframes_ = 0;

    int ch = CV_MAT_CN(frameType);
    int work_ch = ch;

    // for each gaussian mixture of each pixel bg model we store ...
    // the mixture weight (w),
    // the mean (nchannels values) and
    // the covariance
    weight_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1);
    variance_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1);
    mean_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch));

    //make the array for keeping track of the used modes per pixel - all zeros at start
    bgmodelUsedModes_.create(frameSize_, CV_8UC1);
    bgmodelUsedModes_.setTo(cv::Scalar::all(0));

    loadConstants(nmixtures_, varThreshold, backgroundRatio, varThresholdGen, fVarInit, fVarMin, fVarMax, fTau, nShadowDetection);
}

void cv::gpu::MOG2_GPU::operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate, Stream& stream)
{
    using namespace cv::gpu::device::mog;

    int ch = frame.channels();
    int work_ch = ch;

    if (nframes_ == 0 || learningRate >= 1.0f || frame.size() != frameSize_ || work_ch != mean_.channels())
        initialize(frame.size(), frame.type());

    fgmask.create(frameSize_, CV_8UC1);
    fgmask.setTo(cv::Scalar::all(0));

    ++nframes_;
    learningRate = learningRate >= 0.0f && nframes_ > 1 ? learningRate : 1.0f / std::min(2 * nframes_, history);
    CV_Assert(learningRate >= 0.0f);

    mog2_gpu(frame, frame.channels(), fgmask, bgmodelUsedModes_, weight_, variance_, mean_, learningRate, -learningRate * fCT, bShadowDetection, StreamAccessor::getStream(stream));
}

void cv::gpu::MOG2_GPU::getBackgroundImage(GpuMat& backgroundImage, Stream& stream) const
{
    using namespace cv::gpu::device::mog;

    backgroundImage.create(frameSize_, frameType_);

    getBackgroundImage2_gpu(backgroundImage.channels(), bgmodelUsedModes_, weight_, mean_, backgroundImage, StreamAccessor::getStream(stream));
}

void cv::gpu::MOG2_GPU::release()
{
    frameSize_ = Size(0, 0);
    frameType_ = 0;
    nframes_ = 0;

    weight_.release();
    variance_.release();
    mean_.release();

    bgmodelUsedModes_.release();
}

#endif