jdhuff.c 49.7 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
/*
 * jdhuff.c
 *
 * Copyright (C) 1991-1997, Thomas G. Lane.
 * Modified 2006-2012 by Guido Vollbeding.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains Huffman entropy decoding routines.
 * Both sequential and progressive modes are supported in this single module.
 *
 * Much of the complexity here has to do with supporting input suspension.
 * If the data source module demands suspension, we want to be able to back
 * up to the start of the current MCU.  To do this, we copy state variables
 * into local working storage, and update them back to the permanent
 * storage only upon successful completion of an MCU.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"


/* Derived data constructed for each Huffman table */

#define HUFF_LOOKAHEAD	8	/* # of bits of lookahead */

typedef struct {
  /* Basic tables: (element [0] of each array is unused) */
  INT32 maxcode[18];		/* largest code of length k (-1 if none) */
  /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
  INT32 valoffset[17];		/* huffval[] offset for codes of length k */
  /* valoffset[k] = huffval[] index of 1st symbol of code length k, less
   * the smallest code of length k; so given a code of length k, the
   * corresponding symbol is huffval[code + valoffset[k]]
   */

  /* Link to public Huffman table (needed only in jpeg_huff_decode) */
  JHUFF_TBL *pub;

  /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
   * the input data stream.  If the next Huffman code is no more
   * than HUFF_LOOKAHEAD bits long, we can obtain its length and
   * the corresponding symbol directly from these tables.
   */
  int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
  UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
} d_derived_tbl;


/*
 * Fetching the next N bits from the input stream is a time-critical operation
 * for the Huffman decoders.  We implement it with a combination of inline
 * macros and out-of-line subroutines.  Note that N (the number of bits
 * demanded at one time) never exceeds 15 for JPEG use.
 *
 * We read source bytes into get_buffer and dole out bits as needed.
 * If get_buffer already contains enough bits, they are fetched in-line
 * by the macros CHECK_BIT_BUFFER and GET_BITS.  When there aren't enough
 * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
 * as full as possible (not just to the number of bits needed; this
 * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
 * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
 * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
 * at least the requested number of bits --- dummy zeroes are inserted if
 * necessary.
 */

typedef INT32 bit_buf_type;	/* type of bit-extraction buffer */
#define BIT_BUF_SIZE  32	/* size of buffer in bits */

/* If long is > 32 bits on your machine, and shifting/masking longs is
 * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
 * appropriately should be a win.  Unfortunately we can't define the size
 * with something like  #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
 * because not all machines measure sizeof in 8-bit bytes.
 */

typedef struct {		/* Bitreading state saved across MCUs */
  bit_buf_type get_buffer;	/* current bit-extraction buffer */
  int bits_left;		/* # of unused bits in it */
} bitread_perm_state;

typedef struct {		/* Bitreading working state within an MCU */
  /* Current data source location */
  /* We need a copy, rather than munging the original, in case of suspension */
  const JOCTET * next_input_byte; /* => next byte to read from source */
  size_t bytes_in_buffer;	/* # of bytes remaining in source buffer */
  /* Bit input buffer --- note these values are kept in register variables,
   * not in this struct, inside the inner loops.
   */
  bit_buf_type get_buffer;	/* current bit-extraction buffer */
  int bits_left;		/* # of unused bits in it */
  /* Pointer needed by jpeg_fill_bit_buffer. */
  j_decompress_ptr cinfo;	/* back link to decompress master record */
} bitread_working_state;

/* Macros to declare and load/save bitread local variables. */
#define BITREAD_STATE_VARS  \
        register bit_buf_type get_buffer;  \
        register int bits_left;  \
        bitread_working_state br_state

#define BITREAD_LOAD_STATE(cinfop,permstate)  \
        br_state.cinfo = cinfop; \
        br_state.next_input_byte = cinfop->src->next_input_byte; \
        br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
        get_buffer = permstate.get_buffer; \
        bits_left = permstate.bits_left;

#define BITREAD_SAVE_STATE(cinfop,permstate)  \
        cinfop->src->next_input_byte = br_state.next_input_byte; \
        cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
        permstate.get_buffer = get_buffer; \
        permstate.bits_left = bits_left

/*
 * These macros provide the in-line portion of bit fetching.
 * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
 * before using GET_BITS, PEEK_BITS, or DROP_BITS.
 * The variables get_buffer and bits_left are assumed to be locals,
 * but the state struct might not be (jpeg_huff_decode needs this).
 *	CHECK_BIT_BUFFER(state,n,action);
 *		Ensure there are N bits in get_buffer; if suspend, take action.
 *      val = GET_BITS(n);
 *		Fetch next N bits.
 *      val = PEEK_BITS(n);
 *		Fetch next N bits without removing them from the buffer.
 *	DROP_BITS(n);
 *		Discard next N bits.
 * The value N should be a simple variable, not an expression, because it
 * is evaluated multiple times.
 */

#define CHECK_BIT_BUFFER(state,nbits,action) \
        { if (bits_left < (nbits)) {  \
            if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits))  \
              { action; }  \
            get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }

#define GET_BITS(nbits) \
        (((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits))

#define PEEK_BITS(nbits) \
        (((int) (get_buffer >> (bits_left -  (nbits)))) & BIT_MASK(nbits))

#define DROP_BITS(nbits) \
        (bits_left -= (nbits))


/*
 * Code for extracting next Huffman-coded symbol from input bit stream.
 * Again, this is time-critical and we make the main paths be macros.
 *
 * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
 * without looping.  Usually, more than 95% of the Huffman codes will be 8
 * or fewer bits long.  The few overlength codes are handled with a loop,
 * which need not be inline code.
 *
 * Notes about the HUFF_DECODE macro:
 * 1. Near the end of the data segment, we may fail to get enough bits
 *    for a lookahead.  In that case, we do it the hard way.
 * 2. If the lookahead table contains no entry, the next code must be
 *    more than HUFF_LOOKAHEAD bits long.
 * 3. jpeg_huff_decode returns -1 if forced to suspend.
 */

#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
{ register int nb, look; \
  if (bits_left < HUFF_LOOKAHEAD) { \
    if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
    get_buffer = state.get_buffer; bits_left = state.bits_left; \
    if (bits_left < HUFF_LOOKAHEAD) { \
      nb = 1; goto slowlabel; \
    } \
  } \
  look = PEEK_BITS(HUFF_LOOKAHEAD); \
  if ((nb = htbl->look_nbits[look]) != 0) { \
    DROP_BITS(nb); \
    result = htbl->look_sym[look]; \
  } else { \
    nb = HUFF_LOOKAHEAD+1; \
slowlabel: \
    if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
        { failaction; } \
    get_buffer = state.get_buffer; bits_left = state.bits_left; \
  } \
}


/*
 * Expanded entropy decoder object for Huffman decoding.
 *
 * The savable_state subrecord contains fields that change within an MCU,
 * but must not be updated permanently until we complete the MCU.
 */

typedef struct {
  unsigned int EOBRUN;			/* remaining EOBs in EOBRUN */
  int last_dc_val[MAX_COMPS_IN_SCAN];	/* last DC coef for each component */
} savable_state;

/* This macro is to work around compilers with missing or broken
 * structure assignment.  You'll need to fix this code if you have
 * such a compiler and you change MAX_COMPS_IN_SCAN.
 */

#ifndef NO_STRUCT_ASSIGN
#define ASSIGN_STATE(dest,src)  ((dest) = (src))
#else
#if MAX_COMPS_IN_SCAN == 4
#define ASSIGN_STATE(dest,src)  \
        ((dest).EOBRUN = (src).EOBRUN, \
         (dest).last_dc_val[0] = (src).last_dc_val[0], \
         (dest).last_dc_val[1] = (src).last_dc_val[1], \
         (dest).last_dc_val[2] = (src).last_dc_val[2], \
         (dest).last_dc_val[3] = (src).last_dc_val[3])
#endif
#endif


typedef struct {
  struct jpeg_entropy_decoder pub; /* public fields */

  /* These fields are loaded into local variables at start of each MCU.
   * In case of suspension, we exit WITHOUT updating them.
   */
  bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
  savable_state saved;		/* Other state at start of MCU */

  /* These fields are NOT loaded into local working state. */
  boolean insufficient_data;	/* set TRUE after emitting warning */
  unsigned int restarts_to_go;	/* MCUs left in this restart interval */

  /* Following two fields used only in progressive mode */

  /* Pointers to derived tables (these workspaces have image lifespan) */
  d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];

  d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */

  /* Following fields used only in sequential mode */

  /* Pointers to derived tables (these workspaces have image lifespan) */
  d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
  d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];

  /* Precalculated info set up by start_pass for use in decode_mcu: */

  /* Pointers to derived tables to be used for each block within an MCU */
  d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
  d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
  /* Whether we care about the DC and AC coefficient values for each block */
  int coef_limit[D_MAX_BLOCKS_IN_MCU];
} huff_entropy_decoder;

typedef huff_entropy_decoder * huff_entropy_ptr;


static const int jpeg_zigzag_order[8][8] = {
  {  0,  1,  5,  6, 14, 15, 27, 28 },
  {  2,  4,  7, 13, 16, 26, 29, 42 },
  {  3,  8, 12, 17, 25, 30, 41, 43 },
  {  9, 11, 18, 24, 31, 40, 44, 53 },
  { 10, 19, 23, 32, 39, 45, 52, 54 },
  { 20, 22, 33, 38, 46, 51, 55, 60 },
  { 21, 34, 37, 47, 50, 56, 59, 61 },
  { 35, 36, 48, 49, 57, 58, 62, 63 }
};

static const int jpeg_zigzag_order7[7][7] = {
  {  0,  1,  5,  6, 14, 15, 27 },
  {  2,  4,  7, 13, 16, 26, 28 },
  {  3,  8, 12, 17, 25, 29, 38 },
  {  9, 11, 18, 24, 30, 37, 39 },
  { 10, 19, 23, 31, 36, 40, 45 },
  { 20, 22, 32, 35, 41, 44, 46 },
  { 21, 33, 34, 42, 43, 47, 48 }
};

static const int jpeg_zigzag_order6[6][6] = {
  {  0,  1,  5,  6, 14, 15 },
  {  2,  4,  7, 13, 16, 25 },
  {  3,  8, 12, 17, 24, 26 },
  {  9, 11, 18, 23, 27, 32 },
  { 10, 19, 22, 28, 31, 33 },
  { 20, 21, 29, 30, 34, 35 }
};

static const int jpeg_zigzag_order5[5][5] = {
  {  0,  1,  5,  6, 14 },
  {  2,  4,  7, 13, 15 },
  {  3,  8, 12, 16, 21 },
  {  9, 11, 17, 20, 22 },
  { 10, 18, 19, 23, 24 }
};

static const int jpeg_zigzag_order4[4][4] = {
  { 0,  1,  5,  6 },
  { 2,  4,  7, 12 },
  { 3,  8, 11, 13 },
  { 9, 10, 14, 15 }
};

static const int jpeg_zigzag_order3[3][3] = {
  { 0, 1, 5 },
  { 2, 4, 6 },
  { 3, 7, 8 }
};

static const int jpeg_zigzag_order2[2][2] = {
  { 0, 1 },
  { 2, 3 }
};


/*
 * Compute the derived values for a Huffman table.
 * This routine also performs some validation checks on the table.
 */

LOCAL(void)
jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
                         d_derived_tbl ** pdtbl)
{
  JHUFF_TBL *htbl;
  d_derived_tbl *dtbl;
  int p, i, l, si, numsymbols;
  int lookbits, ctr;
  char huffsize[257];
  unsigned int huffcode[257];
  unsigned int code;

  /* Note that huffsize[] and huffcode[] are filled in code-length order,
   * paralleling the order of the symbols themselves in htbl->huffval[].
   */

  /* Find the input Huffman table */
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
  htbl =
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
  if (htbl == NULL)
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);

  /* Allocate a workspace if we haven't already done so. */
  if (*pdtbl == NULL)
    *pdtbl = (d_derived_tbl *)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
                                  SIZEOF(d_derived_tbl));
  dtbl = *pdtbl;
  dtbl->pub = htbl;		/* fill in back link */

  /* Figure C.1: make table of Huffman code length for each symbol */

  p = 0;
  for (l = 1; l <= 16; l++) {
    i = (int) htbl->bits[l];
    if (i < 0 || p + i > 256)	/* protect against table overrun */
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    while (i--)
      huffsize[p++] = (char) l;
  }
  huffsize[p] = 0;
  numsymbols = p;

  /* Figure C.2: generate the codes themselves */
  /* We also validate that the counts represent a legal Huffman code tree. */

  code = 0;
  si = huffsize[0];
  p = 0;
  while (huffsize[p]) {
    while (((int) huffsize[p]) == si) {
      huffcode[p++] = code;
      code++;
    }
    /* code is now 1 more than the last code used for codelength si; but
     * it must still fit in si bits, since no code is allowed to be all ones.
     */
    if (((INT32) code) >= (((INT32) 1) << si))
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    code <<= 1;
    si++;
  }

  /* Figure F.15: generate decoding tables for bit-sequential decoding */

  p = 0;
  for (l = 1; l <= 16; l++) {
    if (htbl->bits[l]) {
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
       * minus the minimum code of length l
       */
      dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
      p += htbl->bits[l];
      dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
    } else {
      dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */
    }
  }
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */

  /* Compute lookahead tables to speed up decoding.
   * First we set all the table entries to 0, indicating "too long";
   * then we iterate through the Huffman codes that are short enough and
   * fill in all the entries that correspond to bit sequences starting
   * with that code.
   */

  MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));

  p = 0;
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
    for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
      /* Generate left-justified code followed by all possible bit sequences */
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
      for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
        dtbl->look_nbits[lookbits] = l;
        dtbl->look_sym[lookbits] = htbl->huffval[p];
        lookbits++;
      }
    }
  }

  /* Validate symbols as being reasonable.
   * For AC tables, we make no check, but accept all byte values 0..255.
   * For DC tables, we require the symbols to be in range 0..15.
   * (Tighter bounds could be applied depending on the data depth and mode,
   * but this is sufficient to ensure safe decoding.)
   */
  if (isDC) {
    for (i = 0; i < numsymbols; i++) {
      int sym = htbl->huffval[i];
      if (sym < 0 || sym > 15)
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    }
  }
}


/*
 * Out-of-line code for bit fetching.
 * Note: current values of get_buffer and bits_left are passed as parameters,
 * but are returned in the corresponding fields of the state struct.
 *
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
 * of get_buffer to be used.  (On machines with wider words, an even larger
 * buffer could be used.)  However, on some machines 32-bit shifts are
 * quite slow and take time proportional to the number of places shifted.
 * (This is true with most PC compilers, for instance.)  In this case it may
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
 */

#ifdef SLOW_SHIFT_32
#define MIN_GET_BITS  15	/* minimum allowable value */
#else
#define MIN_GET_BITS  (BIT_BUF_SIZE-7)
#endif


LOCAL(boolean)
jpeg_fill_bit_buffer (bitread_working_state * state,
                      register bit_buf_type get_buffer, register int bits_left,
                      int nbits)
/* Load up the bit buffer to a depth of at least nbits */
{
  /* Copy heavily used state fields into locals (hopefully registers) */
  register const JOCTET * next_input_byte = state->next_input_byte;
  register size_t bytes_in_buffer = state->bytes_in_buffer;
  j_decompress_ptr cinfo = state->cinfo;

  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
  /* (It is assumed that no request will be for more than that many bits.) */
  /* We fail to do so only if we hit a marker or are forced to suspend. */

  if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */
    while (bits_left < MIN_GET_BITS) {
      register int c;

      /* Attempt to read a byte */
      if (bytes_in_buffer == 0) {
        if (! (*cinfo->src->fill_input_buffer) (cinfo))
          return FALSE;
        next_input_byte = cinfo->src->next_input_byte;
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
      }
      bytes_in_buffer--;
      c = GETJOCTET(*next_input_byte++);

      /* If it's 0xFF, check and discard stuffed zero byte */
      if (c == 0xFF) {
        /* Loop here to discard any padding FF's on terminating marker,
         * so that we can save a valid unread_marker value.  NOTE: we will
         * accept multiple FF's followed by a 0 as meaning a single FF data
         * byte.  This data pattern is not valid according to the standard.
         */
        do {
          if (bytes_in_buffer == 0) {
            if (! (*cinfo->src->fill_input_buffer) (cinfo))
              return FALSE;
            next_input_byte = cinfo->src->next_input_byte;
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
          }
          bytes_in_buffer--;
          c = GETJOCTET(*next_input_byte++);
        } while (c == 0xFF);

        if (c == 0) {
          /* Found FF/00, which represents an FF data byte */
          c = 0xFF;
        } else {
          /* Oops, it's actually a marker indicating end of compressed data.
           * Save the marker code for later use.
           * Fine point: it might appear that we should save the marker into
           * bitread working state, not straight into permanent state.  But
           * once we have hit a marker, we cannot need to suspend within the
           * current MCU, because we will read no more bytes from the data
           * source.  So it is OK to update permanent state right away.
           */
          cinfo->unread_marker = c;
          /* See if we need to insert some fake zero bits. */
          goto no_more_bytes;
        }
      }

      /* OK, load c into get_buffer */
      get_buffer = (get_buffer << 8) | c;
      bits_left += 8;
    } /* end while */
  } else {
  no_more_bytes:
    /* We get here if we've read the marker that terminates the compressed
     * data segment.  There should be enough bits in the buffer register
     * to satisfy the request; if so, no problem.
     */
    if (nbits > bits_left) {
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
       * the data stream, so that we can produce some kind of image.
       * We use a nonvolatile flag to ensure that only one warning message
       * appears per data segment.
       */
      if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) {
        WARNMS(cinfo, JWRN_HIT_MARKER);
        ((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE;
      }
      /* Fill the buffer with zero bits */
      get_buffer <<= MIN_GET_BITS - bits_left;
      bits_left = MIN_GET_BITS;
    }
  }

  /* Unload the local registers */
  state->next_input_byte = next_input_byte;
  state->bytes_in_buffer = bytes_in_buffer;
  state->get_buffer = get_buffer;
  state->bits_left = bits_left;

  return TRUE;
}


/*
 * Figure F.12: extend sign bit.
 * On some machines, a shift and sub will be faster than a table lookup.
 */

#ifdef AVOID_TABLES

#define BIT_MASK(nbits)   ((1<<(nbits))-1)
#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x))

#else

#define BIT_MASK(nbits)   bmask[nbits]
#define HUFF_EXTEND(x,s)  ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x))

static const int bmask[16] =	/* bmask[n] is mask for n rightmost bits */
  { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
    0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF };

#endif /* AVOID_TABLES */


/*
 * Out-of-line code for Huffman code decoding.
 */

LOCAL(int)
jpeg_huff_decode (bitread_working_state * state,
                  register bit_buf_type get_buffer, register int bits_left,
                  d_derived_tbl * htbl, int min_bits)
{
  register int l = min_bits;
  register INT32 code;

  /* HUFF_DECODE has determined that the code is at least min_bits */
  /* bits long, so fetch that many bits in one swoop. */

  CHECK_BIT_BUFFER(*state, l, return -1);
  code = GET_BITS(l);

  /* Collect the rest of the Huffman code one bit at a time. */
  /* This is per Figure F.16 in the JPEG spec. */

  while (code > htbl->maxcode[l]) {
    code <<= 1;
    CHECK_BIT_BUFFER(*state, 1, return -1);
    code |= GET_BITS(1);
    l++;
  }

  /* Unload the local registers */
  state->get_buffer = get_buffer;
  state->bits_left = bits_left;

  /* With garbage input we may reach the sentinel value l = 17. */

  if (l > 16) {
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
    return 0;			/* fake a zero as the safest result */
  }

  return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
}


/*
 * Check for a restart marker & resynchronize decoder.
 * Returns FALSE if must suspend.
 */

LOCAL(boolean)
process_restart (j_decompress_ptr cinfo)
{
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
  int ci;

  /* Throw away any unused bits remaining in bit buffer; */
  /* include any full bytes in next_marker's count of discarded bytes */
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
  entropy->bitstate.bits_left = 0;

  /* Advance past the RSTn marker */
  if (! (*cinfo->marker->read_restart_marker) (cinfo))
    return FALSE;

  /* Re-initialize DC predictions to 0 */
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
    entropy->saved.last_dc_val[ci] = 0;
  /* Re-init EOB run count, too */
  entropy->saved.EOBRUN = 0;

  /* Reset restart counter */
  entropy->restarts_to_go = cinfo->restart_interval;

  /* Reset out-of-data flag, unless read_restart_marker left us smack up
   * against a marker.  In that case we will end up treating the next data
   * segment as empty, and we can avoid producing bogus output pixels by
   * leaving the flag set.
   */
  if (cinfo->unread_marker == 0)
    entropy->insufficient_data = FALSE;

  return TRUE;
}


/*
 * Huffman MCU decoding.
 * Each of these routines decodes and returns one MCU's worth of
 * Huffman-compressed coefficients.
 * The coefficients are reordered from zigzag order into natural array order,
 * but are not dequantized.
 *
 * The i'th block of the MCU is stored into the block pointed to by
 * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
 * (Wholesale zeroing is usually a little faster than retail...)
 *
 * We return FALSE if data source requested suspension.  In that case no
 * changes have been made to permanent state.  (Exception: some output
 * coefficients may already have been assigned.  This is harmless for
 * spectral selection, since we'll just re-assign them on the next call.
 * Successive approximation AC refinement has to be more careful, however.)
 */

/*
 * MCU decoding for DC initial scan (either spectral selection,
 * or first pass of successive approximation).
 */

METHODDEF(boolean)
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
  int Al = cinfo->Al;
  register int s, r;
  int blkn, ci;
  JBLOCKROW block;
  BITREAD_STATE_VARS;
  savable_state state;
  d_derived_tbl * tbl;
  jpeg_component_info * compptr;

  /* Process restart marker if needed; may have to suspend */
  if (cinfo->restart_interval) {
    if (entropy->restarts_to_go == 0)
      if (! process_restart(cinfo))
        return FALSE;
  }

  /* If we've run out of data, just leave the MCU set to zeroes.
   * This way, we return uniform gray for the remainder of the segment.
   */
  if (! entropy->insufficient_data) {

    /* Load up working state */
    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
    ASSIGN_STATE(state, entropy->saved);

    /* Outer loop handles each block in the MCU */

    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
      block = MCU_data[blkn];
      ci = cinfo->MCU_membership[blkn];
      compptr = cinfo->cur_comp_info[ci];
      tbl = entropy->derived_tbls[compptr->dc_tbl_no];

      /* Decode a single block's worth of coefficients */

      /* Section F.2.2.1: decode the DC coefficient difference */
      HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
      if (s) {
        CHECK_BIT_BUFFER(br_state, s, return FALSE);
        r = GET_BITS(s);
        s = HUFF_EXTEND(r, s);
      }

      /* Convert DC difference to actual value, update last_dc_val */
      s += state.last_dc_val[ci];
      state.last_dc_val[ci] = s;
      /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
      (*block)[0] = (JCOEF) (s << Al);
    }

    /* Completed MCU, so update state */
    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
    ASSIGN_STATE(entropy->saved, state);
  }

  /* Account for restart interval (no-op if not using restarts) */
  entropy->restarts_to_go--;

  return TRUE;
}


/*
 * MCU decoding for AC initial scan (either spectral selection,
 * or first pass of successive approximation).
 */

METHODDEF(boolean)
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
  register int s, k, r;
  unsigned int EOBRUN;
  int Se, Al;
  const int * natural_order;
  JBLOCKROW block;
  BITREAD_STATE_VARS;
  d_derived_tbl * tbl;

  /* Process restart marker if needed; may have to suspend */
  if (cinfo->restart_interval) {
    if (entropy->restarts_to_go == 0)
      if (! process_restart(cinfo))
        return FALSE;
  }

  /* If we've run out of data, just leave the MCU set to zeroes.
   * This way, we return uniform gray for the remainder of the segment.
   */
  if (! entropy->insufficient_data) {

    Se = cinfo->Se;
    Al = cinfo->Al;
    natural_order = cinfo->natural_order;

    /* Load up working state.
     * We can avoid loading/saving bitread state if in an EOB run.
     */
    EOBRUN = entropy->saved.EOBRUN;	/* only part of saved state we need */

    /* There is always only one block per MCU */

    if (EOBRUN)			/* if it's a band of zeroes... */
      EOBRUN--;			/* ...process it now (we do nothing) */
    else {
      BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
      block = MCU_data[0];
      tbl = entropy->ac_derived_tbl;

      for (k = cinfo->Ss; k <= Se; k++) {
        HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
        r = s >> 4;
        s &= 15;
        if (s) {
          k += r;
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
          r = GET_BITS(s);
          s = HUFF_EXTEND(r, s);
          /* Scale and output coefficient in natural (dezigzagged) order */
          (*block)[natural_order[k]] = (JCOEF) (s << Al);
        } else {
          if (r != 15) {	/* EOBr, run length is 2^r + appended bits */
            if (r) {		/* EOBr, r > 0 */
              EOBRUN = 1 << r;
              CHECK_BIT_BUFFER(br_state, r, return FALSE);
              r = GET_BITS(r);
              EOBRUN += r;
              EOBRUN--;		/* this band is processed at this moment */
            }
            break;		/* force end-of-band */
          }
          k += 15;		/* ZRL: skip 15 zeroes in band */
        }
      }

      BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
    }

    /* Completed MCU, so update state */
    entropy->saved.EOBRUN = EOBRUN;	/* only part of saved state we need */
  }

  /* Account for restart interval (no-op if not using restarts) */
  entropy->restarts_to_go--;

  return TRUE;
}


/*
 * MCU decoding for DC successive approximation refinement scan.
 * Note: we assume such scans can be multi-component, although the spec
 * is not very clear on the point.
 */

METHODDEF(boolean)
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
  int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
  int blkn;
  JBLOCKROW block;
  BITREAD_STATE_VARS;

  /* Process restart marker if needed; may have to suspend */
  if (cinfo->restart_interval) {
    if (entropy->restarts_to_go == 0)
      if (! process_restart(cinfo))
        return FALSE;
  }

  /* Not worth the cycles to check insufficient_data here,
   * since we will not change the data anyway if we read zeroes.
   */

  /* Load up working state */
  BITREAD_LOAD_STATE(cinfo,entropy->bitstate);

  /* Outer loop handles each block in the MCU */

  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    block = MCU_data[blkn];

    /* Encoded data is simply the next bit of the two's-complement DC value */
    CHECK_BIT_BUFFER(br_state, 1, return FALSE);
    if (GET_BITS(1))
      (*block)[0] |= p1;
    /* Note: since we use |=, repeating the assignment later is safe */
  }

  /* Completed MCU, so update state */
  BITREAD_SAVE_STATE(cinfo,entropy->bitstate);

  /* Account for restart interval (no-op if not using restarts) */
  entropy->restarts_to_go--;

  return TRUE;
}


/*
 * MCU decoding for AC successive approximation refinement scan.
 */

METHODDEF(boolean)
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
  register int s, k, r;
  unsigned int EOBRUN;
  int Se, p1, m1;
  const int * natural_order;
  JBLOCKROW block;
  JCOEFPTR thiscoef;
  BITREAD_STATE_VARS;
  d_derived_tbl * tbl;
  int num_newnz;
  int newnz_pos[DCTSIZE2];

  /* Process restart marker if needed; may have to suspend */
  if (cinfo->restart_interval) {
    if (entropy->restarts_to_go == 0)
      if (! process_restart(cinfo))
        return FALSE;
  }

  /* If we've run out of data, don't modify the MCU.
   */
  if (! entropy->insufficient_data) {

    Se = cinfo->Se;
    p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
    m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */
    natural_order = cinfo->natural_order;

    /* Load up working state */
    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
    EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */

    /* There is always only one block per MCU */
    block = MCU_data[0];
    tbl = entropy->ac_derived_tbl;

    /* If we are forced to suspend, we must undo the assignments to any newly
     * nonzero coefficients in the block, because otherwise we'd get confused
     * next time about which coefficients were already nonzero.
     * But we need not undo addition of bits to already-nonzero coefficients;
     * instead, we can test the current bit to see if we already did it.
     */
    num_newnz = 0;

    /* initialize coefficient loop counter to start of band */
    k = cinfo->Ss;

    if (EOBRUN == 0) {
      do {
        HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
        r = s >> 4;
        s &= 15;
        if (s) {
          if (s != 1)		/* size of new coef should always be 1 */
            WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
          CHECK_BIT_BUFFER(br_state, 1, goto undoit);
          if (GET_BITS(1))
            s = p1;		/* newly nonzero coef is positive */
          else
            s = m1;		/* newly nonzero coef is negative */
        } else {
          if (r != 15) {
            EOBRUN = 1 << r;	/* EOBr, run length is 2^r + appended bits */
            if (r) {
              CHECK_BIT_BUFFER(br_state, r, goto undoit);
              r = GET_BITS(r);
              EOBRUN += r;
            }
            break;		/* rest of block is handled by EOB logic */
          }
          /* note s = 0 for processing ZRL */
        }
        /* Advance over already-nonzero coefs and r still-zero coefs,
         * appending correction bits to the nonzeroes.  A correction bit is 1
         * if the absolute value of the coefficient must be increased.
         */
        do {
          thiscoef = *block + natural_order[k];
          if (*thiscoef) {
            CHECK_BIT_BUFFER(br_state, 1, goto undoit);
            if (GET_BITS(1)) {
              if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
                if (*thiscoef >= 0)
                  *thiscoef += p1;
                else
                  *thiscoef += m1;
              }
            }
          } else {
            if (--r < 0)
              break;		/* reached target zero coefficient */
          }
          k++;
        } while (k <= Se);
        if (s) {
          int pos = natural_order[k];
          /* Output newly nonzero coefficient */
          (*block)[pos] = (JCOEF) s;
          /* Remember its position in case we have to suspend */
          newnz_pos[num_newnz++] = pos;
        }
        k++;
      } while (k <= Se);
    }

    if (EOBRUN) {
      /* Scan any remaining coefficient positions after the end-of-band
       * (the last newly nonzero coefficient, if any).  Append a correction
       * bit to each already-nonzero coefficient.  A correction bit is 1
       * if the absolute value of the coefficient must be increased.
       */
      do {
        thiscoef = *block + natural_order[k];
        if (*thiscoef) {
          CHECK_BIT_BUFFER(br_state, 1, goto undoit);
          if (GET_BITS(1)) {
            if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
              if (*thiscoef >= 0)
                *thiscoef += p1;
              else
                *thiscoef += m1;
            }
          }
        }
        k++;
      } while (k <= Se);
      /* Count one block completed in EOB run */
      EOBRUN--;
    }

    /* Completed MCU, so update state */
    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
    entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
  }

  /* Account for restart interval (no-op if not using restarts) */
  entropy->restarts_to_go--;

  return TRUE;

undoit:
  /* Re-zero any output coefficients that we made newly nonzero */
  while (num_newnz)
    (*block)[newnz_pos[--num_newnz]] = 0;

  return FALSE;
}


/*
 * Decode one MCU's worth of Huffman-compressed coefficients,
 * partial blocks.
 */

METHODDEF(boolean)
decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
  const int * natural_order;
  int Se, blkn;
  BITREAD_STATE_VARS;
  savable_state state;

  /* Process restart marker if needed; may have to suspend */
  if (cinfo->restart_interval) {
    if (entropy->restarts_to_go == 0)
      if (! process_restart(cinfo))
        return FALSE;
  }

  /* If we've run out of data, just leave the MCU set to zeroes.
   * This way, we return uniform gray for the remainder of the segment.
   */
  if (! entropy->insufficient_data) {

    natural_order = cinfo->natural_order;
    Se = cinfo->lim_Se;

    /* Load up working state */
    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
    ASSIGN_STATE(state, entropy->saved);

    /* Outer loop handles each block in the MCU */

    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
      JBLOCKROW block = MCU_data[blkn];
      d_derived_tbl * htbl;
      register int s, k, r;
      int coef_limit, ci;

      /* Decode a single block's worth of coefficients */

      /* Section F.2.2.1: decode the DC coefficient difference */
      htbl = entropy->dc_cur_tbls[blkn];
      HUFF_DECODE(s, br_state, htbl, return FALSE, label1);

      htbl = entropy->ac_cur_tbls[blkn];
      k = 1;
      coef_limit = entropy->coef_limit[blkn];
      if (coef_limit) {
        /* Convert DC difference to actual value, update last_dc_val */
        if (s) {
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
          r = GET_BITS(s);
          s = HUFF_EXTEND(r, s);
        }
        ci = cinfo->MCU_membership[blkn];
        s += state.last_dc_val[ci];
        state.last_dc_val[ci] = s;
        /* Output the DC coefficient */
        (*block)[0] = (JCOEF) s;

        /* Section F.2.2.2: decode the AC coefficients */
        /* Since zeroes are skipped, output area must be cleared beforehand */
        for (; k < coef_limit; k++) {
          HUFF_DECODE(s, br_state, htbl, return FALSE, label2);

          r = s >> 4;
          s &= 15;

          if (s) {
            k += r;
            CHECK_BIT_BUFFER(br_state, s, return FALSE);
            r = GET_BITS(s);
            s = HUFF_EXTEND(r, s);
            /* Output coefficient in natural (dezigzagged) order.
             * Note: the extra entries in natural_order[] will save us
             * if k > Se, which could happen if the data is corrupted.
             */
            (*block)[natural_order[k]] = (JCOEF) s;
          } else {
            if (r != 15)
              goto EndOfBlock;
            k += 15;
          }
        }
      } else {
        if (s) {
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
          DROP_BITS(s);
        }
      }

      /* Section F.2.2.2: decode the AC coefficients */
      /* In this path we just discard the values */
      for (; k <= Se; k++) {
        HUFF_DECODE(s, br_state, htbl, return FALSE, label3);

        r = s >> 4;
        s &= 15;

        if (s) {
          k += r;
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
          DROP_BITS(s);
        } else {
          if (r != 15)
            break;
          k += 15;
        }
      }

      EndOfBlock: ;
    }

    /* Completed MCU, so update state */
    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
    ASSIGN_STATE(entropy->saved, state);
  }

  /* Account for restart interval (no-op if not using restarts) */
  entropy->restarts_to_go--;

  return TRUE;
}


/*
 * Decode one MCU's worth of Huffman-compressed coefficients,
 * full-size blocks.
 */

METHODDEF(boolean)
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
  int blkn;
  BITREAD_STATE_VARS;
  savable_state state;

  /* Process restart marker if needed; may have to suspend */
  if (cinfo->restart_interval) {
    if (entropy->restarts_to_go == 0)
      if (! process_restart(cinfo))
        return FALSE;
  }

  /* If we've run out of data, just leave the MCU set to zeroes.
   * This way, we return uniform gray for the remainder of the segment.
   */
  if (! entropy->insufficient_data) {

    /* Load up working state */
    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
    ASSIGN_STATE(state, entropy->saved);

    /* Outer loop handles each block in the MCU */

    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
      JBLOCKROW block = MCU_data[blkn];
      d_derived_tbl * htbl;
      register int s, k, r;
      int coef_limit, ci;

      /* Decode a single block's worth of coefficients */

      /* Section F.2.2.1: decode the DC coefficient difference */
      htbl = entropy->dc_cur_tbls[blkn];
      HUFF_DECODE(s, br_state, htbl, return FALSE, label1);

      htbl = entropy->ac_cur_tbls[blkn];
      k = 1;
      coef_limit = entropy->coef_limit[blkn];
      if (coef_limit) {
        /* Convert DC difference to actual value, update last_dc_val */
        if (s) {
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
          r = GET_BITS(s);
          s = HUFF_EXTEND(r, s);
        }
        ci = cinfo->MCU_membership[blkn];
        s += state.last_dc_val[ci];
        state.last_dc_val[ci] = s;
        /* Output the DC coefficient */
        (*block)[0] = (JCOEF) s;

        /* Section F.2.2.2: decode the AC coefficients */
        /* Since zeroes are skipped, output area must be cleared beforehand */
        for (; k < coef_limit; k++) {
          HUFF_DECODE(s, br_state, htbl, return FALSE, label2);

          r = s >> 4;
          s &= 15;

          if (s) {
            k += r;
            CHECK_BIT_BUFFER(br_state, s, return FALSE);
            r = GET_BITS(s);
            s = HUFF_EXTEND(r, s);
            /* Output coefficient in natural (dezigzagged) order.
             * Note: the extra entries in jpeg_natural_order[] will save us
             * if k >= DCTSIZE2, which could happen if the data is corrupted.
             */
            (*block)[jpeg_natural_order[k]] = (JCOEF) s;
          } else {
            if (r != 15)
              goto EndOfBlock;
            k += 15;
          }
        }
      } else {
        if (s) {
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
          DROP_BITS(s);
        }
      }

      /* Section F.2.2.2: decode the AC coefficients */
      /* In this path we just discard the values */
      for (; k < DCTSIZE2; k++) {
        HUFF_DECODE(s, br_state, htbl, return FALSE, label3);

        r = s >> 4;
        s &= 15;

        if (s) {
          k += r;
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
          DROP_BITS(s);
        } else {
          if (r != 15)
            break;
          k += 15;
        }
      }

      EndOfBlock: ;
    }

    /* Completed MCU, so update state */
    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
    ASSIGN_STATE(entropy->saved, state);
  }

  /* Account for restart interval (no-op if not using restarts) */
  entropy->restarts_to_go--;

  return TRUE;
}


/*
 * Initialize for a Huffman-compressed scan.
 */

METHODDEF(void)
start_pass_huff_decoder (j_decompress_ptr cinfo)
{
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
  int ci, blkn, tbl, i;
  jpeg_component_info * compptr;

  if (cinfo->progressive_mode) {
    /* Validate progressive scan parameters */
    if (cinfo->Ss == 0) {
      if (cinfo->Se != 0)
        goto bad;
    } else {
      /* need not check Ss/Se < 0 since they came from unsigned bytes */
      if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
        goto bad;
      /* AC scans may have only one component */
      if (cinfo->comps_in_scan != 1)
        goto bad;
    }
    if (cinfo->Ah != 0) {
      /* Successive approximation refinement scan: must have Al = Ah-1. */
      if (cinfo->Ah-1 != cinfo->Al)
        goto bad;
    }
    if (cinfo->Al > 13) {	/* need not check for < 0 */
      /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
       * but the spec doesn't say so, and we try to be liberal about what we
       * accept.  Note: large Al values could result in out-of-range DC
       * coefficients during early scans, leading to bizarre displays due to
       * overflows in the IDCT math.  But we won't crash.
       */
      bad:
      ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
               cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
    }
    /* Update progression status, and verify that scan order is legal.
     * Note that inter-scan inconsistencies are treated as warnings
     * not fatal errors ... not clear if this is right way to behave.
     */
    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
      int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
      int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
      if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
        WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
      for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
        int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
        if (cinfo->Ah != expected)
          WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
        coef_bit_ptr[coefi] = cinfo->Al;
      }
    }

    /* Select MCU decoding routine */
    if (cinfo->Ah == 0) {
      if (cinfo->Ss == 0)
        entropy->pub.decode_mcu = decode_mcu_DC_first;
      else
        entropy->pub.decode_mcu = decode_mcu_AC_first;
    } else {
      if (cinfo->Ss == 0)
        entropy->pub.decode_mcu = decode_mcu_DC_refine;
      else
        entropy->pub.decode_mcu = decode_mcu_AC_refine;
    }

    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
      compptr = cinfo->cur_comp_info[ci];
      /* Make sure requested tables are present, and compute derived tables.
       * We may build same derived table more than once, but it's not expensive.
       */
      if (cinfo->Ss == 0) {
        if (cinfo->Ah == 0) {	/* DC refinement needs no table */
          tbl = compptr->dc_tbl_no;
          jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
                                  & entropy->derived_tbls[tbl]);
        }
      } else {
        tbl = compptr->ac_tbl_no;
        jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
                                & entropy->derived_tbls[tbl]);
        /* remember the single active table */
        entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
      }
      /* Initialize DC predictions to 0 */
      entropy->saved.last_dc_val[ci] = 0;
    }

    /* Initialize private state variables */
    entropy->saved.EOBRUN = 0;
  } else {
    /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
     * This ought to be an error condition, but we make it a warning because
     * there are some baseline files out there with all zeroes in these bytes.
     */
    if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
        ((cinfo->is_baseline || cinfo->Se < DCTSIZE2) &&
        cinfo->Se != cinfo->lim_Se))
      WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);

    /* Select MCU decoding routine */
    /* We retain the hard-coded case for full-size blocks.
     * This is not necessary, but it appears that this version is slightly
     * more performant in the given implementation.
     * With an improved implementation we would prefer a single optimized
     * function.
     */
    if (cinfo->lim_Se != DCTSIZE2-1)
      entropy->pub.decode_mcu = decode_mcu_sub;
    else
      entropy->pub.decode_mcu = decode_mcu;

    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
      compptr = cinfo->cur_comp_info[ci];
      /* Compute derived values for Huffman tables */
      /* We may do this more than once for a table, but it's not expensive */
      tbl = compptr->dc_tbl_no;
      jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
                              & entropy->dc_derived_tbls[tbl]);
      if (cinfo->lim_Se) {	/* AC needs no table when not present */
        tbl = compptr->ac_tbl_no;
        jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
                                & entropy->ac_derived_tbls[tbl]);
      }
      /* Initialize DC predictions to 0 */
      entropy->saved.last_dc_val[ci] = 0;
    }

    /* Precalculate decoding info for each block in an MCU of this scan */
    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
      ci = cinfo->MCU_membership[blkn];
      compptr = cinfo->cur_comp_info[ci];
      /* Precalculate which table to use for each block */
      entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
      entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
      /* Decide whether we really care about the coefficient values */
      if (compptr->component_needed) {
        ci = compptr->DCT_v_scaled_size;
        i = compptr->DCT_h_scaled_size;
        switch (cinfo->lim_Se) {
        case (1*1-1):
          entropy->coef_limit[blkn] = 1;
          break;
        case (2*2-1):
          if (ci <= 0 || ci > 2) ci = 2;
          if (i <= 0 || i > 2) i = 2;
          entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1];
          break;
        case (3*3-1):
          if (ci <= 0 || ci > 3) ci = 3;
          if (i <= 0 || i > 3) i = 3;
          entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1];
          break;
        case (4*4-1):
          if (ci <= 0 || ci > 4) ci = 4;
          if (i <= 0 || i > 4) i = 4;
          entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1];
          break;
        case (5*5-1):
          if (ci <= 0 || ci > 5) ci = 5;
          if (i <= 0 || i > 5) i = 5;
          entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1];
          break;
        case (6*6-1):
          if (ci <= 0 || ci > 6) ci = 6;
          if (i <= 0 || i > 6) i = 6;
          entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1];
          break;
        case (7*7-1):
          if (ci <= 0 || ci > 7) ci = 7;
          if (i <= 0 || i > 7) i = 7;
          entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1];
          break;
        default:
          if (ci <= 0 || ci > 8) ci = 8;
          if (i <= 0 || i > 8) i = 8;
          entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1];
          break;
        }
      } else {
        entropy->coef_limit[blkn] = 0;
      }
    }
  }

  /* Initialize bitread state variables */
  entropy->bitstate.bits_left = 0;
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
  entropy->insufficient_data = FALSE;

  /* Initialize restart counter */
  entropy->restarts_to_go = cinfo->restart_interval;
}


/*
 * Module initialization routine for Huffman entropy decoding.
 */

GLOBAL(void)
jinit_huff_decoder (j_decompress_ptr cinfo)
{
  huff_entropy_ptr entropy;
  int i;

  entropy = (huff_entropy_ptr)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
                                SIZEOF(huff_entropy_decoder));
  cinfo->entropy = &entropy->pub;
  entropy->pub.start_pass = start_pass_huff_decoder;

  if (cinfo->progressive_mode) {
    /* Create progression status table */
    int *coef_bit_ptr, ci;
    cinfo->coef_bits = (int (*)[DCTSIZE2])
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
                                  cinfo->num_components*DCTSIZE2*SIZEOF(int));
    coef_bit_ptr = & cinfo->coef_bits[0][0];
    for (ci = 0; ci < cinfo->num_components; ci++)
      for (i = 0; i < DCTSIZE2; i++)
        *coef_bit_ptr++ = -1;

    /* Mark derived tables unallocated */
    for (i = 0; i < NUM_HUFF_TBLS; i++) {
      entropy->derived_tbls[i] = NULL;
    }
  } else {
    /* Mark tables unallocated */
    for (i = 0; i < NUM_HUFF_TBLS; i++) {
      entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
    }
  }
}