surf.cl 67.5 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2013, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
//    Peng Xiao, pengxiao@multicorewareinc.com
//    Sen Liu, swjtuls1987@126.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

// specialized for non-image2d_t supported platform, intel HD4000, for example
#ifdef DISABLE_IMAGE2D
#define IMAGE_INT32 __global uint  *
#define IMAGE_INT8  __global uchar *
#else
#define IMAGE_INT32 image2d_t
#define IMAGE_INT8  image2d_t
#endif

uint read_sumTex(IMAGE_INT32 img, sampler_t sam, int2 coord, int rows, int cols, int elemPerRow)
{
#ifdef DISABLE_IMAGE2D
    int x = clamp(coord.x, 0, cols);
    int y = clamp(coord.y, 0, rows);
    return img[elemPerRow * y + x];
#else
    return read_imageui(img, sam, coord).x;
#endif
}
uchar read_imgTex(IMAGE_INT8 img, sampler_t sam, float2 coord, int rows, int cols, int elemPerRow)
{
#ifdef DISABLE_IMAGE2D
    int x = clamp(round(coord.x), 0, cols - 1);
    int y = clamp(round(coord.y), 0, rows - 1);
    return img[elemPerRow * y + x];
#else
    return (uchar)read_imageui(img, sam, coord).x;
#endif
}

// dynamically change the precision used for floating type

#if defined (DOUBLE_SUPPORT)
#ifdef cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#elif defined (cl_amd_fp64)
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#endif
#define F double
#else
#define F float
#endif

// Image read mode
__constant sampler_t sampler    = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;

#ifndef FLT_EPSILON
#define FLT_EPSILON (1e-15)
#endif

#ifndef CV_PI_F
#define CV_PI_F 3.14159265f
#endif


// Use integral image to calculate haar wavelets.
// N = 2
// for simple haar paatern
float icvCalcHaarPatternSum_2(
    IMAGE_INT32 sumTex,
    __constant float2 *src,
    int oldSize,
    int newSize,
    int y, int x,
    int rows, int cols, int elemPerRow)
{

    float ratio = (float)newSize / oldSize;

    F d = 0;

    int2 dx1 = convert_int2(round(ratio * src[0]));
    int2 dy1 = convert_int2(round(ratio * src[1]));
    int2 dx2 = convert_int2(round(ratio * src[2]));
    int2 dy2 = convert_int2(round(ratio * src[3]));

    F t = 0;
    t += read_sumTex( sumTex, sampler, (int2)(x + dx1.x, y + dy1.x), rows, cols, elemPerRow );
    t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.x, y + dy2.x), rows, cols, elemPerRow );
    t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.x, y + dy1.x), rows, cols, elemPerRow );
    t += read_sumTex( sumTex, sampler, (int2)(x + dx2.x, y + dy2.x), rows, cols, elemPerRow );
    d += t * src[4].x / ((dx2.x - dx1.x) * (dy2.x - dy1.x));

    t = 0;
    t += read_sumTex( sumTex, sampler, (int2)(x + dx1.y, y + dy1.y), rows, cols, elemPerRow );
    t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.y, y + dy2.y), rows, cols, elemPerRow );
    t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.y, y + dy1.y), rows, cols, elemPerRow );
    t += read_sumTex( sumTex, sampler, (int2)(x + dx2.y, y + dy2.y), rows, cols, elemPerRow );
    d += t * src[4].y / ((dx2.y - dx1.y) * (dy2.y - dy1.y));

    return (float)d;
}

////////////////////////////////////////////////////////////////////////
// Hessian

__inline int calcSize(int octave, int layer)
{
    /* Wavelet size at first layer of first octave. */
    const int HAAR_SIZE0 = 9;

    /* Wavelet size increment between layers. This should be an even number,
    such that the wavelet sizes in an octave are either all even or all odd.
    This ensures that when looking for the neighbours of a sample, the layers
    above and below are aligned correctly. */
    const int HAAR_SIZE_INC = 6;

    return (HAAR_SIZE0 + HAAR_SIZE_INC * layer) << octave;
}

// Calculate a derivative in an axis-aligned direction (x or y).  The "plus1"
// boxes contribute 1 * (area), and the "minus2" box contributes -2 * (area).
// So the final computation is plus1a + plus1b - 2 * minus2.  The corners are
// labeled A, B, C, and D, with A being the top left, B being top right, C
// being bottom left, and D being bottom right.
F calcAxisAlignedDerivative(
        int plus1a_A, int plus1a_B, int plus1a_C, int plus1a_D, F plus1a_scale,
        int plus1b_A, int plus1b_B, int plus1b_C, int plus1b_D, F plus1b_scale,
        int minus2_A, int minus2_B, int minus2_C, int minus2_D, F minus2_scale)
{
    F plus1a = plus1a_A - plus1a_B - plus1a_C + plus1a_D;
    F plus1b = plus1b_A - plus1b_B - plus1b_C + plus1b_D;
    F minus2 = minus2_A - minus2_B - minus2_C + minus2_D;

    return (plus1a / plus1a_scale -
            2.0f * minus2 / minus2_scale +
            plus1b / plus1b_scale);
}

//calculate targeted layer per-pixel determinant and trace with an integral image
__kernel void icvCalcLayerDetAndTrace(
    IMAGE_INT32 sumTex, // input integral image
    __global float * det,      // output Determinant
    __global float * trace,    // output trace
    int det_step,     // the step of det in bytes
    int trace_step,   // the step of trace in bytes
    int c_img_rows,
    int c_img_cols,
    int c_nOctaveLayers,
    int c_octave,
    int c_layer_rows,
    int sumTex_step
    )
{
    det_step   /= sizeof(*det);
    trace_step /= sizeof(*trace);
    sumTex_step/= sizeof(uint);
    // Determine the indices
    const int gridDim_y  = get_num_groups(1) / (c_nOctaveLayers + 2);
    const int blockIdx_y = get_group_id(1) % gridDim_y;
    const int blockIdx_z = get_group_id(1) / gridDim_y;

    const int j = get_local_id(0) + get_group_id(0) * get_local_size(0);
    const int i = get_local_id(1) + blockIdx_y * get_local_size(1);
    const int layer = blockIdx_z;

    const int size = calcSize(c_octave, layer);

    const int samples_i = 1 + ((c_img_rows - size) >> c_octave);
    const int samples_j = 1 + ((c_img_cols - size) >> c_octave);

    // Ignore pixels where some of the kernel is outside the image
    const int margin = (size >> 1) >> c_octave;

    if (size <= c_img_rows && size <= c_img_cols && i < samples_i && j < samples_j)
    {
        int x = j << c_octave;
        int y = i << c_octave;

        float ratio = (float)size / 9;

        // Precompute some commonly used values, which are used to offset
        // texture coordinates in the integral image.
        int r1 = round(ratio);
        int r2 = round(ratio * 2.0f);
        int r3 = round(ratio * 3.0f);
        int r4 = round(ratio * 4.0f);
        int r5 = round(ratio * 5.0f);
        int r6 = round(ratio * 6.0f);
        int r7 = round(ratio * 7.0f);
        int r8 = round(ratio * 8.0f);
        int r9 = round(ratio * 9.0f);

        // Calculate the approximated derivative in the x-direction
        F d = 0;
        {
            // Some of the pixels needed to compute the derivative are
            // repeated, so we only don't duplicate the fetch here.
            int t02 = read_sumTex( sumTex, sampler, (int2)(x, y + r2), c_img_rows, c_img_cols, sumTex_step );
            int t07 = read_sumTex( sumTex, sampler, (int2)(x, y + r7), c_img_rows, c_img_cols, sumTex_step );
            int t32 = read_sumTex( sumTex, sampler, (int2)(x + r3, y + r2), c_img_rows, c_img_cols, sumTex_step );
            int t37 = read_sumTex( sumTex, sampler, (int2)(x + r3, y + r7), c_img_rows, c_img_cols, sumTex_step );
            int t62 = read_sumTex( sumTex, sampler, (int2)(x + r6, y + r2), c_img_rows, c_img_cols, sumTex_step );
            int t67 = read_sumTex( sumTex, sampler, (int2)(x + r6, y + r7), c_img_rows, c_img_cols, sumTex_step );
            int t92 = read_sumTex( sumTex, sampler, (int2)(x + r9, y + r2), c_img_rows, c_img_cols, sumTex_step );
            int t97 = read_sumTex( sumTex, sampler, (int2)(x + r9, y + r7), c_img_rows, c_img_cols, sumTex_step );

            d = calcAxisAlignedDerivative(t02, t07, t32, t37, (r3) * (r7 - r2),
                                          t62, t67, t92, t97, (r9 - r6) * (r7 - r2),
                                          t32, t37, t62, t67, (r6 - r3) * (r7 - r2));
        }
        const float dx  = (float)d;

        // Calculate the approximated derivative in the y-direction
        d = 0;
        {
            // Some of the pixels needed to compute the derivative are
            // repeated, so we only don't duplicate the fetch here.
            int t20 = read_sumTex( sumTex, sampler, (int2)(x + r2, y), c_img_rows, c_img_cols, sumTex_step );
            int t23 = read_sumTex( sumTex, sampler, (int2)(x + r2, y + r3), c_img_rows, c_img_cols, sumTex_step );
            int t70 = read_sumTex( sumTex, sampler, (int2)(x + r7, y), c_img_rows, c_img_cols, sumTex_step );
            int t73 = read_sumTex( sumTex, sampler, (int2)(x + r7, y + r3), c_img_rows, c_img_cols, sumTex_step );
            int t26 = read_sumTex( sumTex, sampler, (int2)(x + r2, y + r6), c_img_rows, c_img_cols, sumTex_step );
            int t76 = read_sumTex( sumTex, sampler, (int2)(x + r7, y + r6), c_img_rows, c_img_cols, sumTex_step );
            int t29 = read_sumTex( sumTex, sampler, (int2)(x + r2, y + r9), c_img_rows, c_img_cols, sumTex_step );
            int t79 = read_sumTex( sumTex, sampler, (int2)(x + r7, y + r9), c_img_rows, c_img_cols, sumTex_step );

            d = calcAxisAlignedDerivative(t20, t23, t70, t73, (r7 - r2) * (r3),
                                          t26, t29, t76, t79, (r7 - r2) * (r9 - r6),
                                          t23, t26, t73, t76, (r7 - r2) * (r6 - r3));
        }
        const float dy  = (float)d;

        // Calculate the approximated derivative in the xy-direction
        d = 0;
        {
            // There's no saving us here, we just have to get all of the pixels in
            // separate fetches
            F t = 0;
            t += read_sumTex( sumTex, sampler, (int2)(x + r1, y + r1), c_img_rows, c_img_cols, sumTex_step );
            t -= read_sumTex( sumTex, sampler, (int2)(x + r1, y + r4), c_img_rows, c_img_cols, sumTex_step );
            t -= read_sumTex( sumTex, sampler, (int2)(x + r4, y + r1), c_img_rows, c_img_cols, sumTex_step );
            t += read_sumTex( sumTex, sampler, (int2)(x + r4, y + r4), c_img_rows, c_img_cols, sumTex_step );
            d += t / ((r4 - r1) * (r4 - r1));

            t = 0;
            t += read_sumTex( sumTex, sampler, (int2)(x + r5, y + r1), c_img_rows, c_img_cols, sumTex_step );
            t -= read_sumTex( sumTex, sampler, (int2)(x + r5, y + r4), c_img_rows, c_img_cols, sumTex_step );
            t -= read_sumTex( sumTex, sampler, (int2)(x + r8, y + r1), c_img_rows, c_img_cols, sumTex_step );
            t += read_sumTex( sumTex, sampler, (int2)(x + r8, y + r4), c_img_rows, c_img_cols, sumTex_step );
            d -= t / ((r8 - r5) * (r4 - r1));

            t = 0;
            t += read_sumTex( sumTex, sampler, (int2)(x + r1, y + r5), c_img_rows, c_img_cols, sumTex_step );
            t -= read_sumTex( sumTex, sampler, (int2)(x + r1, y + r8), c_img_rows, c_img_cols, sumTex_step );
            t -= read_sumTex( sumTex, sampler, (int2)(x + r4, y + r5), c_img_rows, c_img_cols, sumTex_step );
            t += read_sumTex( sumTex, sampler, (int2)(x + r4, y + r8), c_img_rows, c_img_cols, sumTex_step );
            d -= t / ((r4 - r1) * (r8 - r5));

            t = 0;
            t += read_sumTex( sumTex, sampler, (int2)(x + r5, y + r5), c_img_rows, c_img_cols, sumTex_step );
            t -= read_sumTex( sumTex, sampler, (int2)(x + r5, y + r8), c_img_rows, c_img_cols, sumTex_step );
            t -= read_sumTex( sumTex, sampler, (int2)(x + r8, y + r5), c_img_rows, c_img_cols, sumTex_step );
            t += read_sumTex( sumTex, sampler, (int2)(x + r8, y + r8), c_img_rows, c_img_cols, sumTex_step );
            d += t / ((r8 - r5) * (r8 - r5));
        }
        const float dxy = (float)d;

        det  [j + margin + det_step   * (layer * c_layer_rows + i + margin)] = dx * dy - 0.81f * dxy * dxy;
        trace[j + margin + trace_step * (layer * c_layer_rows + i + margin)] = dx + dy;
    }
}

////////////////////////////////////////////////////////////////////////
// NONMAX

__constant float c_DM[5] = {0, 0, 9, 9, 1};

bool within_check(IMAGE_INT32 maskSumTex, int sum_i, int sum_j, int size, int rows, int cols, int step)
{
    float ratio = (float)size / 9.0f;

    float d = 0;

    int dx1 = round(ratio * c_DM[0]);
    int dy1 = round(ratio * c_DM[1]);
    int dx2 = round(ratio * c_DM[2]);
    int dy2 = round(ratio * c_DM[3]);

    float t = 0;

    t += read_sumTex(maskSumTex, sampler, (int2)(sum_j + dx1, sum_i + dy1), rows, cols, step);
    t -= read_sumTex(maskSumTex, sampler, (int2)(sum_j + dx1, sum_i + dy2), rows, cols, step);
    t -= read_sumTex(maskSumTex, sampler, (int2)(sum_j + dx2, sum_i + dy1), rows, cols, step);
    t += read_sumTex(maskSumTex, sampler, (int2)(sum_j + dx2, sum_i + dy2), rows, cols, step);

    d += t * c_DM[4] / ((dx2 - dx1) * (dy2 - dy1));

    return (d >= 0.5f);
}

// Non-maximal suppression to further filtering the candidates from previous step
__kernel
void icvFindMaximaInLayer_withmask(
    __global const float * det,
    __global const float * trace,
    __global int4 * maxPosBuffer,
    volatile __global int* maxCounter,
    int counter_offset,
    int det_step,     // the step of det in bytes
    int trace_step,   // the step of trace in bytes
    int c_img_rows,
    int c_img_cols,
    int c_nOctaveLayers,
    int c_octave,
    int c_layer_rows,
    int c_layer_cols,
    int c_max_candidates,
    float c_hessianThreshold,
    IMAGE_INT32 maskSumTex,
    int mask_step
)
{
    volatile __local  float N9[768]; // threads.x * threads.y * 3

    det_step   /= sizeof(*det);
    trace_step /= sizeof(*trace);
    maxCounter += counter_offset;
    mask_step  /= sizeof(uint);

    // Determine the indices
    const int gridDim_y  = get_num_groups(1) / c_nOctaveLayers;
    const int blockIdx_y = get_group_id(1)   % gridDim_y;
    const int blockIdx_z = get_group_id(1)   / gridDim_y;

    const int layer = blockIdx_z + 1;

    const int size = calcSize(c_octave, layer);

    // Ignore pixels without a 3x3x3 neighbourhood in the layer above
    const int margin = ((calcSize(c_octave, layer + 1) >> 1) >> c_octave) + 1;

    const int j = get_local_id(0) + get_group_id(0) * (get_local_size(0) - 2) + margin - 1;
    const int i = get_local_id(1) + blockIdx_y * (get_local_size(1) - 2) + margin - 1;

    // Is this thread within the hessian buffer?
    const int zoff = get_local_size(0) * get_local_size(1);
    const int localLin = get_local_id(0) + get_local_id(1) * get_local_size(0) + zoff;
    N9[localLin - zoff] =
        det[det_step *
            (c_layer_rows * (layer - 1) + min(max(i, 0), c_img_rows - 1)) // y
            + min(max(j, 0), c_img_cols - 1)];                            // x
    N9[localLin       ] =
        det[det_step *
            (c_layer_rows * (layer    ) + min(max(i, 0), c_img_rows - 1)) // y
            + min(max(j, 0), c_img_cols - 1)];                            // x
    N9[localLin + zoff] =
        det[det_step *
            (c_layer_rows * (layer + 1) + min(max(i, 0), c_img_rows - 1)) // y
            + min(max(j, 0), c_img_cols - 1)];                            // x

    barrier(CLK_LOCAL_MEM_FENCE);

    if (i < c_layer_rows - margin
            && j < c_layer_cols - margin
            && get_local_id(0) > 0
            && get_local_id(0) < get_local_size(0) - 1
            && get_local_id(1) > 0
            && get_local_id(1) < get_local_size(1) - 1 // these are unnecessary conditions ported from CUDA
       )
    {
        float val0 = N9[localLin];

        if (val0 > c_hessianThreshold)
        {
            // Coordinates for the start of the wavelet in the sum image. There
            // is some integer division involved, so don't try to simplify this
            // (cancel out sampleStep) without checking the result is the same
            const int sum_i = (i - ((size >> 1) >> c_octave)) << c_octave;
            const int sum_j = (j - ((size >> 1) >> c_octave)) << c_octave;

            if (within_check(maskSumTex, sum_i, sum_j, size, c_img_rows, c_img_cols, mask_step))
            {
                // Check to see if we have a max (in its 26 neighbours)
                const bool condmax = val0 > N9[localLin - 1 - get_local_size(0) - zoff]
                                     &&                   val0 > N9[localLin     - get_local_size(0) - zoff]
                                     &&                   val0 > N9[localLin + 1 - get_local_size(0) - zoff]
                                     &&                   val0 > N9[localLin - 1                     - zoff]
                                     &&                   val0 > N9[localLin                         - zoff]
                                     &&                   val0 > N9[localLin + 1                     - zoff]
                                     &&                   val0 > N9[localLin - 1 + get_local_size(0) - zoff]
                                     &&                   val0 > N9[localLin     + get_local_size(0) - zoff]
                                     &&                   val0 > N9[localLin + 1 + get_local_size(0) - zoff]

                                     &&                   val0 > N9[localLin - 1 - get_local_size(0)]
                                     &&                   val0 > N9[localLin     - get_local_size(0)]
                                     &&                   val0 > N9[localLin + 1 - get_local_size(0)]
                                     &&                   val0 > N9[localLin - 1                    ]
                                     &&                   val0 > N9[localLin + 1                    ]
                                     &&                   val0 > N9[localLin - 1 + get_local_size(0)]
                                     &&                   val0 > N9[localLin     + get_local_size(0)]
                                     &&                   val0 > N9[localLin + 1 + get_local_size(0)]

                                     &&                   val0 > N9[localLin - 1 - get_local_size(0) + zoff]
                                     &&                   val0 > N9[localLin     - get_local_size(0) + zoff]
                                     &&                   val0 > N9[localLin + 1 - get_local_size(0) + zoff]
                                     &&                   val0 > N9[localLin - 1                     + zoff]
                                     &&                   val0 > N9[localLin                         + zoff]
                                     &&                   val0 > N9[localLin + 1                     + zoff]
                                     &&                   val0 > N9[localLin - 1 + get_local_size(0) + zoff]
                                     &&                   val0 > N9[localLin     + get_local_size(0) + zoff]
                                     &&                   val0 > N9[localLin + 1 + get_local_size(0) + zoff]
                                     ;

                if(condmax)
                {
                    int ind = atomic_inc(maxCounter);

                    if (ind < c_max_candidates)
                    {
                        const int laplacian = (int) copysign(1.0f, trace[trace_step* (layer * c_layer_rows + i) + j]);

                        maxPosBuffer[ind] = (int4)(j, i, layer, laplacian);
                    }
                }
            }
        }
    }
}

__kernel
void icvFindMaximaInLayer(
    __global float * det,
    __global float * trace,
    __global int4 * maxPosBuffer,
    volatile __global  int* maxCounter,
    int counter_offset,
    int det_step,     // the step of det in bytes
    int trace_step,   // the step of trace in bytes
    int c_img_rows,
    int c_img_cols,
    int c_nOctaveLayers,
    int c_octave,
    int c_layer_rows,
    int c_layer_cols,
    int c_max_candidates,
    float c_hessianThreshold
)
{
    volatile __local  float N9[768]; // threads.x * threads.y * 3

    det_step   /= sizeof(float);
    trace_step /= sizeof(float);
    maxCounter += counter_offset;

    // Determine the indices
    const int gridDim_y  = get_num_groups(1) / c_nOctaveLayers;
    const int blockIdx_y = get_group_id(1)   % gridDim_y;
    const int blockIdx_z = get_group_id(1)   / gridDim_y;

    const int layer = blockIdx_z + 1;

    const int size = calcSize(c_octave, layer);

    // Ignore pixels without a 3x3x3 neighbourhood in the layer above
    const int margin = ((calcSize(c_octave, layer + 1) >> 1) >> c_octave) + 1;

    const int j = get_local_id(0) + get_group_id(0) * (get_local_size(0) - 2) + margin - 1;
    const int i = get_local_id(1) + blockIdx_y      * (get_local_size(1) - 2) + margin - 1;

    // Is this thread within the hessian buffer?
    const int zoff     = get_local_size(0) * get_local_size(1);
    const int localLin = get_local_id(0) + get_local_id(1) * get_local_size(0) + zoff;

    int l_x = min(max(j, 0), c_img_cols - 1);
    int l_y = c_layer_rows * layer + min(max(i, 0), c_img_rows - 1);

    N9[localLin - zoff] =
        det[det_step * (l_y - c_layer_rows) + l_x];
    N9[localLin       ] =
        det[det_step * (l_y               ) + l_x];
    N9[localLin + zoff] =
        det[det_step * (l_y + c_layer_rows) + l_x];
    barrier(CLK_LOCAL_MEM_FENCE);

    if (i < c_layer_rows - margin
            && j < c_layer_cols - margin
            && get_local_id(0) > 0
            && get_local_id(0) < get_local_size(0) - 1
            && get_local_id(1) > 0
            && get_local_id(1) < get_local_size(1) - 1 // these are unnecessary conditions ported from CUDA
       )
    {
        float val0 = N9[localLin];
        if (val0 > c_hessianThreshold)
        {
            // Coordinates for the start of the wavelet in the sum image. There
            // is some integer division involved, so don't try to simplify this
            // (cancel out sampleStep) without checking the result is the same

            // Check to see if we have a max (in its 26 neighbours)
            const bool condmax = val0 > N9[localLin - 1 - get_local_size(0) - zoff]
                                 &&                   val0 > N9[localLin     - get_local_size(0) - zoff]
                                 &&                   val0 > N9[localLin + 1 - get_local_size(0) - zoff]
                                 &&                   val0 > N9[localLin - 1                     - zoff]
                                 &&                   val0 > N9[localLin                         - zoff]
                                 &&                   val0 > N9[localLin + 1                     - zoff]
                                 &&                   val0 > N9[localLin - 1 + get_local_size(0) - zoff]
                                 &&                   val0 > N9[localLin     + get_local_size(0) - zoff]
                                 &&                   val0 > N9[localLin + 1 + get_local_size(0) - zoff]

                                 &&                   val0 > N9[localLin - 1 - get_local_size(0)]
                                 &&                   val0 > N9[localLin     - get_local_size(0)]
                                 &&                   val0 > N9[localLin + 1 - get_local_size(0)]
                                 &&                   val0 > N9[localLin - 1                    ]
                                 &&                   val0 > N9[localLin + 1                    ]
                                 &&                   val0 > N9[localLin - 1 + get_local_size(0)]
                                 &&                   val0 > N9[localLin     + get_local_size(0)]
                                 &&                   val0 > N9[localLin + 1 + get_local_size(0)]

                                 &&                   val0 > N9[localLin - 1 - get_local_size(0) + zoff]
                                 &&                   val0 > N9[localLin     - get_local_size(0) + zoff]
                                 &&                   val0 > N9[localLin + 1 - get_local_size(0) + zoff]
                                 &&                   val0 > N9[localLin - 1                     + zoff]
                                 &&                   val0 > N9[localLin                         + zoff]
                                 &&                   val0 > N9[localLin + 1                     + zoff]
                                 &&                   val0 > N9[localLin - 1 + get_local_size(0) + zoff]
                                 &&                   val0 > N9[localLin     + get_local_size(0) + zoff]
                                 &&                   val0 > N9[localLin + 1 + get_local_size(0) + zoff]
                                 ;

            if(condmax)
            {
                int ind = atomic_inc(maxCounter);

                if (ind < c_max_candidates)
                {
                    const int laplacian = (int) copysign(1.0f, trace[trace_step* (layer * c_layer_rows + i) + j]);

                    maxPosBuffer[ind] = (int4)(j, i, layer, laplacian);
                }
            }
        }
    }
}

// solve 3x3 linear system Ax=b for floating point input
inline bool solve3x3_float(const float4 *A, const float *b, float *x)
{
    float det = A[0].x * (A[1].y * A[2].z - A[1].z * A[2].y)
                - A[0].y * (A[1].x * A[2].z - A[1].z * A[2].x)
                + A[0].z * (A[1].x * A[2].y - A[1].y * A[2].x);

    if (det != 0)
    {
        F invdet = 1.0 / det;

        x[0] = invdet *
               (b[0]    * (A[1].y * A[2].z - A[1].z * A[2].y) -
                A[0].y * (b[1]    * A[2].z - A[1].z * b[2]   ) +
                A[0].z * (b[1]    * A[2].y - A[1].y * b[2]   ));

        x[1] = invdet *
               (A[0].x * (b[1]    * A[2].z - A[1].z * b[2]   ) -
                b[0]    * (A[1].x * A[2].z - A[1].z * A[2].x) +
                A[0].z * (A[1].x * b[2]    - b[1]    * A[2].x));

        x[2] = invdet *
               (A[0].x * (A[1].y * b[2]    - b[1]    * A[2].y) -
                A[0].y * (A[1].x * b[2]    - b[1]    * A[2].x) +
                b[0]    * (A[1].x * A[2].y - A[1].y * A[2].x));

        return true;
    }
    return false;
}

#define X_ROW          0
#define Y_ROW          1
#define LAPLACIAN_ROW  2
#define OCTAVE_ROW     3
#define SIZE_ROW       4
#define ANGLE_ROW      5
#define HESSIAN_ROW    6
#define ROWS_COUNT     7

////////////////////////////////////////////////////////////////////////
// INTERPOLATION
__kernel
void icvInterpolateKeypoint(
    __global const float * det,
    __global const int4 * maxPosBuffer,
    __global float * keypoints,
    volatile __global  int * featureCounter,
    int det_step,
    int keypoints_step,
    int c_img_rows,
    int c_img_cols,
    int c_octave,
    int c_layer_rows,
    int c_max_features
)
{
    det_step /= sizeof(*det);
    keypoints_step /= sizeof(*keypoints);
    __global float * featureX       = keypoints + X_ROW * keypoints_step;
    __global float * featureY       = keypoints + Y_ROW * keypoints_step;
    __global int * featureLaplacian = (__global int *)keypoints + LAPLACIAN_ROW * keypoints_step;
    __global int * featureOctave    = (__global int *)keypoints + OCTAVE_ROW * keypoints_step;
    __global float * featureSize    = keypoints + SIZE_ROW * keypoints_step;
    __global float * featureHessian = keypoints + HESSIAN_ROW * keypoints_step;

    const int4 maxPos = maxPosBuffer[get_group_id(0)];

    const int j = maxPos.x - 1 + get_local_id(0);
    const int i = maxPos.y - 1 + get_local_id(1);
    const int layer = maxPos.z - 1 + get_local_id(2);

    volatile __local  float N9[3][3][3];

    N9[get_local_id(2)][get_local_id(1)][get_local_id(0)] =
        det[det_step * (c_layer_rows * layer + i) + j];
    barrier(CLK_LOCAL_MEM_FENCE);

    if (get_local_id(0) == 0 && get_local_id(1) == 0 && get_local_id(2) == 0)
    {
        float dD[3];

        //dx
        dD[0] = -0.5f * (N9[1][1][2] - N9[1][1][0]);
        //dy
        dD[1] = -0.5f * (N9[1][2][1] - N9[1][0][1]);
        //ds
        dD[2] = -0.5f * (N9[2][1][1] - N9[0][1][1]);

        float4 H[3];

        //dxx
        H[0].x = N9[1][1][0] - 2.0f * N9[1][1][1] + N9[1][1][2];
        //dxy
        H[0].y= 0.25f * (N9[1][2][2] - N9[1][2][0] - N9[1][0][2] + N9[1][0][0]);
        //dxs
        H[0].z= 0.25f * (N9[2][1][2] - N9[2][1][0] - N9[0][1][2] + N9[0][1][0]);
        //dyx = dxy
        H[1].x = H[0].y;
        //dyy
        H[1].y = N9[1][0][1] - 2.0f * N9[1][1][1] + N9[1][2][1];
        //dys
        H[1].z= 0.25f * (N9[2][2][1] - N9[2][0][1] - N9[0][2][1] + N9[0][0][1]);
        //dsx = dxs
        H[2].x = H[0].z;
        //dsy = dys
        H[2].y = H[1].z;
        //dss
        H[2].z = N9[0][1][1] - 2.0f * N9[1][1][1] + N9[2][1][1];

        float x[3];

        if (solve3x3_float(H, dD, x))
        {
            if (fabs(x[0]) <= 1.f && fabs(x[1]) <= 1.f && fabs(x[2]) <= 1.f)
            {
                // if the step is within the interpolation region, perform it

                const int size = calcSize(c_octave, maxPos.z);

                const int sum_i = (maxPos.y - ((size >> 1) >> c_octave)) << c_octave;
                const int sum_j = (maxPos.x - ((size >> 1) >> c_octave)) << c_octave;

                const float center_i = sum_i + (float)(size - 1) / 2;
                const float center_j = sum_j + (float)(size - 1) / 2;

                const float px = center_j + x[0] * (1 << c_octave);
                const float py = center_i + x[1] * (1 << c_octave);

                const int ds = size - calcSize(c_octave, maxPos.z - 1);
                const float psize = round(size + x[2] * ds);

                /* The sampling intervals and wavelet sized for selecting an orientation
                and building the keypoint descriptor are defined relative to 's' */
                const float s = psize * 1.2f / 9.0f;

                /* To find the dominant orientation, the gradients in x and y are
                sampled in a circle of radius 6s using wavelets of size 4s.
                We ensure the gradient wavelet size is even to ensure the
                wavelet pattern is balanced and symmetric around its center */
                const int grad_wav_size = 2 * round(2.0f * s);

                // check when grad_wav_size is too big
                if ((c_img_rows + 1) >= grad_wav_size && (c_img_cols + 1) >= grad_wav_size)
                {
                    // Get a new feature index.
                    int ind = atomic_inc(featureCounter);

                    if (ind < c_max_features)
                    {
                        featureX[ind] = px;
                        featureY[ind] = py;
                        featureLaplacian[ind] = maxPos.w;
                        featureOctave[ind] = c_octave;
                        featureSize[ind] = psize;
                        featureHessian[ind] = N9[1][1][1];
                    }
                } // grad_wav_size check
            } // If the subpixel interpolation worked
        }
    } // If this is thread 0.
}

////////////////////////////////////////////////////////////////////////
// Orientation

#define ORI_WIN			 60
#define ORI_SAMPLES		 113

// The distance between samples in the beginning of the the reduction
#define ORI_RESPONSE_REDUCTION_WIDTH		 48
#define ORI_RESPONSE_ARRAY_SIZE			     (ORI_RESPONSE_REDUCTION_WIDTH * 2)

__constant float c_aptX[ORI_SAMPLES] = {-6, -5, -5, -5, -5, -5, -5, -5, -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6};
__constant float c_aptY[ORI_SAMPLES] = {0, -3, -2, -1, 0, 1, 2, 3, -4, -3, -2, -1, 0, 1, 2, 3, 4, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, -3, -2, -1, 0, 1, 2, 3, 0};
__constant float c_aptW[ORI_SAMPLES] = {0.001455130288377404f, 0.001707611023448408f, 0.002547456417232752f, 0.003238451667129993f, 0.0035081731621176f,
                                        0.003238451667129993f, 0.002547456417232752f, 0.001707611023448408f, 0.002003900473937392f, 0.0035081731621176f, 0.005233579315245152f,
                                        0.00665318313986063f, 0.00720730796456337f, 0.00665318313986063f, 0.005233579315245152f, 0.0035081731621176f,
                                        0.002003900473937392f, 0.001707611023448408f, 0.0035081731621176f, 0.006141661666333675f, 0.009162282571196556f,
                                        0.01164754293859005f, 0.01261763460934162f, 0.01164754293859005f, 0.009162282571196556f, 0.006141661666333675f,
                                        0.0035081731621176f, 0.001707611023448408f, 0.002547456417232752f, 0.005233579315245152f, 0.009162282571196556f,
                                        0.01366852037608624f, 0.01737609319388866f, 0.0188232995569706f, 0.01737609319388866f, 0.01366852037608624f,
                                        0.009162282571196556f, 0.005233579315245152f, 0.002547456417232752f, 0.003238451667129993f, 0.00665318313986063f,
                                        0.01164754293859005f, 0.01737609319388866f, 0.02208934165537357f, 0.02392910048365593f, 0.02208934165537357f,
                                        0.01737609319388866f, 0.01164754293859005f, 0.00665318313986063f, 0.003238451667129993f, 0.001455130288377404f,
                                        0.0035081731621176f, 0.00720730796456337f, 0.01261763460934162f, 0.0188232995569706f, 0.02392910048365593f,
                                        0.02592208795249462f, 0.02392910048365593f, 0.0188232995569706f, 0.01261763460934162f, 0.00720730796456337f,
                                        0.0035081731621176f, 0.001455130288377404f, 0.003238451667129993f, 0.00665318313986063f, 0.01164754293859005f,
                                        0.01737609319388866f, 0.02208934165537357f, 0.02392910048365593f, 0.02208934165537357f, 0.01737609319388866f,
                                        0.01164754293859005f, 0.00665318313986063f, 0.003238451667129993f, 0.002547456417232752f, 0.005233579315245152f,
                                        0.009162282571196556f, 0.01366852037608624f, 0.01737609319388866f, 0.0188232995569706f, 0.01737609319388866f,
                                        0.01366852037608624f, 0.009162282571196556f, 0.005233579315245152f, 0.002547456417232752f, 0.001707611023448408f,
                                        0.0035081731621176f, 0.006141661666333675f, 0.009162282571196556f, 0.01164754293859005f, 0.01261763460934162f,
                                        0.01164754293859005f, 0.009162282571196556f, 0.006141661666333675f, 0.0035081731621176f, 0.001707611023448408f,
                                        0.002003900473937392f, 0.0035081731621176f, 0.005233579315245152f, 0.00665318313986063f, 0.00720730796456337f,
                                        0.00665318313986063f, 0.005233579315245152f, 0.0035081731621176f, 0.002003900473937392f, 0.001707611023448408f,
                                        0.002547456417232752f, 0.003238451667129993f, 0.0035081731621176f, 0.003238451667129993f, 0.002547456417232752f,
                                        0.001707611023448408f, 0.001455130288377404f
                                       };

__constant float2 c_NX[5] = { (float2)(0, 2), (float2)(0, 0), (float2)(2, 4), (float2)(4, 4), (float2)(-1, 1) };
__constant float2 c_NY[5] = { (float2)(0, 0), (float2)(0, 2), (float2)(4, 4), (float2)(2, 4), (float2)(1, -1) };

void reduce_32_sum(volatile __local  float * data, volatile float* partial_reduction, int tid)
{
#define op(A, B) (*A)+(B)
    data[tid] = *partial_reduction;
    barrier(CLK_LOCAL_MEM_FENCE);
#ifndef WAVE_SIZE
#define WAVE_SIZE 1
#endif
    if (tid < 16)
    {
        data[tid] = *partial_reduction = op(partial_reduction, data[tid + 16]);
#if WAVE_SIZE < 16
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 8)
    {
#endif
        data[tid] = *partial_reduction = op(partial_reduction, data[tid + 8]);
#if WAVE_SIZE < 8
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 4)
    {
#endif
        data[tid] = *partial_reduction = op(partial_reduction, data[tid + 4]);
#if WAVE_SIZE < 4
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 2)
    {
#endif
        data[tid] = *partial_reduction = op(partial_reduction, data[tid + 2 ]);
#if WAVE_SIZE < 2
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 1)
    {
#endif
        data[tid] = *partial_reduction = op(partial_reduction, data[tid + 1 ]);
    }
#undef WAVE_SIZE
#undef op
}

__kernel
void icvCalcOrientation(
    IMAGE_INT32 sumTex,
    __global float * keypoints,
    int keypoints_step,
    int c_img_rows,
    int c_img_cols,
    int sum_step
)
{
    keypoints_step /= sizeof(*keypoints);
    sum_step       /= sizeof(uint);
    __global float* featureX    = keypoints + X_ROW * keypoints_step;
    __global float* featureY    = keypoints + Y_ROW * keypoints_step;
    __global float* featureSize = keypoints + SIZE_ROW * keypoints_step;
    __global float* featureDir  = keypoints + ANGLE_ROW * keypoints_step;


    __local  float s_X[ORI_SAMPLES];
    __local  float s_Y[ORI_SAMPLES];
    __local  float s_angle[ORI_SAMPLES];

    // Need to allocate enough to make the reduction work without accessing
    // past the end of the array.
    __local  float s_sumx[ORI_RESPONSE_ARRAY_SIZE];
    __local  float s_sumy[ORI_RESPONSE_ARRAY_SIZE];
    __local  float s_mod[ORI_RESPONSE_ARRAY_SIZE];

    /* The sampling intervals and wavelet sized for selecting an orientation
    and building the keypoint descriptor are defined relative to 's' */
    const float s = featureSize[get_group_id(0)] * 1.2f / 9.0f;


    /* To find the dominant orientation, the gradients in x and y are
    sampled in a circle of radius 6s using wavelets of size 4s.
    We ensure the gradient wavelet size is even to ensure the
    wavelet pattern is balanced and symmetric around its center */
    const int grad_wav_size = 2 * round(2.0f * s);

    // check when grad_wav_size is too big
    if ((c_img_rows + 1) < grad_wav_size || (c_img_cols + 1) < grad_wav_size)
        return;

    // Calc X, Y, angle and store it to shared memory
    const int tid = get_local_id(0);
    // Initialize values that are only used as part of the reduction later.
    if (tid < ORI_RESPONSE_ARRAY_SIZE - ORI_LOCAL_SIZE) {
        s_mod[tid + ORI_LOCAL_SIZE] = 0.0f;
    }

    float ratio = (float)grad_wav_size / 4;

    int r2 = round(ratio * 2.0);
    int r4 = round(ratio * 4.0);
    for (int i = tid; i < ORI_SAMPLES; i += ORI_LOCAL_SIZE )
    {
        float X = 0.0f, Y = 0.0f, angle = 0.0f;
        const float margin = (float)(grad_wav_size - 1) / 2.0f;
        const int x = round(featureX[get_group_id(0)] + c_aptX[i] * s - margin);
        const int y = round(featureY[get_group_id(0)] + c_aptY[i] * s - margin);

        if (y >= 0 && y < (c_img_rows + 1) - grad_wav_size &&
            x >= 0 && x < (c_img_cols + 1) - grad_wav_size)
        {

            float apt = c_aptW[i];

            // Compute the haar sum without fetching duplicate pixels.
            float t00 = read_sumTex( sumTex, sampler, (int2)(x, y), c_img_rows, c_img_cols, sum_step);
            float t02 = read_sumTex( sumTex, sampler, (int2)(x, y + r2), c_img_rows, c_img_cols, sum_step);
            float t04 = read_sumTex( sumTex, sampler, (int2)(x, y + r4), c_img_rows, c_img_cols, sum_step);
            float t20 = read_sumTex( sumTex, sampler, (int2)(x + r2, y), c_img_rows, c_img_cols, sum_step);
            float t24 = read_sumTex( sumTex, sampler, (int2)(x + r2, y + r4), c_img_rows, c_img_cols, sum_step);
            float t40 = read_sumTex( sumTex, sampler, (int2)(x + r4, y), c_img_rows, c_img_cols, sum_step);
            float t42 = read_sumTex( sumTex, sampler, (int2)(x + r4, y + r2), c_img_rows, c_img_cols, sum_step);
            float t44 = read_sumTex( sumTex, sampler, (int2)(x + r4, y + r4), c_img_rows, c_img_cols, sum_step);

            F t = t00 - t04 - t20 + t24;
            X -= t / ((r2) * (r4));

            t = t20 - t24 - t40 + t44;
            X += t / ((r4 - r2) * (r4));

            t = t00 - t02 - t40 + t42;
            Y += t / ((r2) * (r4));

            t = t02 - t04 - t42 + t44;
            Y -= t  / ((r4) * (r4 - r2));

            X = apt*X;
            Y = apt*Y;

            angle = atan2(Y, X);

            if (angle < 0)
                angle += 2.0f * CV_PI_F;
            angle *= 180.0f / CV_PI_F;

        }

        s_X[i] = X;
        s_Y[i] = Y;
        s_angle[i] = angle;
    }
    barrier(CLK_LOCAL_MEM_FENCE);

    float bestx = 0, besty = 0, best_mod = 0;
    float sumx = 0.0f, sumy = 0.0f;
    const int dir = tid * ORI_SEARCH_INC;
    #pragma unroll
    for (int i = 0; i < ORI_SAMPLES; ++i) {
        int angle = round(s_angle[i]);

        int d = abs(angle - dir);
        if (d < ORI_WIN / 2 || d > 360 - ORI_WIN / 2)
        {
            sumx += s_X[i];
            sumy += s_Y[i];
        }
    }
    s_sumx[tid] = sumx;
    s_sumy[tid] = sumy;
    s_mod[tid] = sumx*sumx + sumy*sumy;
    barrier(CLK_LOCAL_MEM_FENCE);

    // This reduction searches for the longest wavelet response vector.  The first
    // step uses all of the work items in the workgroup to narrow the search
    // down to the three candidates.  It requires s_mod to have a few more
    // elements allocated past the work-group size, which are pre-initialized to
    // 0.0f above.
    for(int t = ORI_RESPONSE_REDUCTION_WIDTH; t >= 3; t /= 2) {
        if (tid < t) {
            if (s_mod[tid] < s_mod[tid + t]) {
                s_mod[tid] = s_mod[tid + t];
                s_sumx[tid] = s_sumx[tid + t];
                s_sumy[tid] = s_sumy[tid + t];
            }
        }
        barrier(CLK_LOCAL_MEM_FENCE);
    }

    // Do the final reduction and write out the result.
    if (tid == 0)
    {
        int bestIdx = 0;

        // The loop above narrowed the search of the longest vector to three
        // possibilities.  Pick the best here.
        if (s_mod[1] > s_mod[bestIdx])
            bestIdx = 1;
        if (s_mod[2] > s_mod[bestIdx])
            bestIdx = 2;

        float kp_dir = atan2(s_sumy[bestIdx], s_sumx[bestIdx]);
        if (kp_dir < 0)
            kp_dir += 2.0f * CV_PI_F;
        kp_dir *= 180.0f / CV_PI_F;

        kp_dir = 360.0f - kp_dir;
        if (fabs(kp_dir - 360.f) < FLT_EPSILON)
            kp_dir = 0.f;

        featureDir[get_group_id(0)] = kp_dir;
    }
}

__kernel
void icvSetUpright(
    __global float * keypoints,
    int keypoints_step,
    int nFeatures
)
{
    keypoints_step /= sizeof(*keypoints);
    __global float* featureDir  = keypoints + ANGLE_ROW * keypoints_step;

    if(get_global_id(0) <= nFeatures)
    {
        featureDir[get_global_id(0)] = 270.0f;
    }
}


#undef ORI_SEARCH_INC
#undef ORI_WIN
#undef ORI_SAMPLES

////////////////////////////////////////////////////////////////////////
// Descriptors

#define PATCH_SZ 20

__constant float c_DW[PATCH_SZ * PATCH_SZ] =
{
    3.695352233989979e-006f, 8.444558261544444e-006f, 1.760426494001877e-005f, 3.34794785885606e-005f, 5.808438800158911e-005f, 9.193058212986216e-005f, 0.0001327334757661447f, 0.0001748319627949968f, 0.0002100782439811155f, 0.0002302826324012131f, 0.0002302826324012131f, 0.0002100782439811155f, 0.0001748319627949968f, 0.0001327334757661447f, 9.193058212986216e-005f, 5.808438800158911e-005f, 3.34794785885606e-005f, 1.760426494001877e-005f, 8.444558261544444e-006f, 3.695352233989979e-006f,
    8.444558261544444e-006f, 1.929736572492402e-005f, 4.022897701361217e-005f, 7.650675252079964e-005f, 0.0001327334903180599f, 0.0002100782585330308f, 0.0003033203829545528f, 0.0003995231236331165f, 0.0004800673632416874f, 0.0005262381164357066f, 0.0005262381164357066f, 0.0004800673632416874f, 0.0003995231236331165f, 0.0003033203829545528f, 0.0002100782585330308f, 0.0001327334903180599f, 7.650675252079964e-005f, 4.022897701361217e-005f, 1.929736572492402e-005f, 8.444558261544444e-006f,
    1.760426494001877e-005f, 4.022897701361217e-005f, 8.386484114453197e-005f, 0.0001594926579855382f, 0.0002767078403849155f, 0.0004379475140012801f, 0.0006323281559161842f, 0.0008328808471560478f, 0.001000790391117334f, 0.001097041997127235f, 0.001097041997127235f, 0.001000790391117334f, 0.0008328808471560478f, 0.0006323281559161842f, 0.0004379475140012801f, 0.0002767078403849155f, 0.0001594926579855382f, 8.386484114453197e-005f, 4.022897701361217e-005f, 1.760426494001877e-005f,
    3.34794785885606e-005f, 7.650675252079964e-005f, 0.0001594926579855382f, 0.0003033203247468919f, 0.0005262380582280457f, 0.0008328807889483869f, 0.001202550483867526f, 0.001583957928232849f, 0.001903285388834775f, 0.002086334861814976f, 0.002086334861814976f, 0.001903285388834775f, 0.001583957928232849f, 0.001202550483867526f, 0.0008328807889483869f, 0.0005262380582280457f, 0.0003033203247468919f, 0.0001594926579855382f, 7.650675252079964e-005f, 3.34794785885606e-005f,
    5.808438800158911e-005f, 0.0001327334903180599f, 0.0002767078403849155f, 0.0005262380582280457f, 0.0009129836107604206f, 0.001444985857233405f, 0.002086335094645619f, 0.002748048631474376f, 0.00330205773934722f, 0.003619635012000799f, 0.003619635012000799f, 0.00330205773934722f, 0.002748048631474376f, 0.002086335094645619f, 0.001444985857233405f, 0.0009129836107604206f, 0.0005262380582280457f, 0.0002767078403849155f, 0.0001327334903180599f, 5.808438800158911e-005f,
    9.193058212986216e-005f, 0.0002100782585330308f, 0.0004379475140012801f, 0.0008328807889483869f, 0.001444985857233405f, 0.002286989474669099f, 0.00330205773934722f, 0.004349356517195702f, 0.00522619066759944f, 0.005728822201490402f, 0.005728822201490402f, 0.00522619066759944f, 0.004349356517195702f, 0.00330205773934722f, 0.002286989474669099f, 0.001444985857233405f, 0.0008328807889483869f, 0.0004379475140012801f, 0.0002100782585330308f, 9.193058212986216e-005f,
    0.0001327334757661447f, 0.0003033203829545528f, 0.0006323281559161842f, 0.001202550483867526f, 0.002086335094645619f, 0.00330205773934722f, 0.004767658654600382f, 0.006279794964939356f, 0.007545807864516974f, 0.008271530270576477f, 0.008271530270576477f, 0.007545807864516974f, 0.006279794964939356f, 0.004767658654600382f, 0.00330205773934722f, 0.002086335094645619f, 0.001202550483867526f, 0.0006323281559161842f, 0.0003033203829545528f, 0.0001327334757661447f,
    0.0001748319627949968f, 0.0003995231236331165f, 0.0008328808471560478f, 0.001583957928232849f, 0.002748048631474376f, 0.004349356517195702f, 0.006279794964939356f, 0.008271529339253902f, 0.009939077310264111f, 0.01089497376233339f, 0.01089497376233339f, 0.009939077310264111f, 0.008271529339253902f, 0.006279794964939356f, 0.004349356517195702f, 0.002748048631474376f, 0.001583957928232849f, 0.0008328808471560478f, 0.0003995231236331165f, 0.0001748319627949968f,
    0.0002100782439811155f, 0.0004800673632416874f, 0.001000790391117334f, 0.001903285388834775f, 0.00330205773934722f, 0.00522619066759944f, 0.007545807864516974f, 0.009939077310264111f, 0.01194280479103327f, 0.01309141051024199f, 0.01309141051024199f, 0.01194280479103327f, 0.009939077310264111f, 0.007545807864516974f, 0.00522619066759944f, 0.00330205773934722f, 0.001903285388834775f, 0.001000790391117334f, 0.0004800673632416874f, 0.0002100782439811155f,
    0.0002302826324012131f, 0.0005262381164357066f, 0.001097041997127235f, 0.002086334861814976f, 0.003619635012000799f, 0.005728822201490402f, 0.008271530270576477f, 0.01089497376233339f, 0.01309141051024199f, 0.01435048412531614f, 0.01435048412531614f, 0.01309141051024199f, 0.01089497376233339f, 0.008271530270576477f, 0.005728822201490402f, 0.003619635012000799f, 0.002086334861814976f, 0.001097041997127235f, 0.0005262381164357066f, 0.0002302826324012131f,
    0.0002302826324012131f, 0.0005262381164357066f, 0.001097041997127235f, 0.002086334861814976f, 0.003619635012000799f, 0.005728822201490402f, 0.008271530270576477f, 0.01089497376233339f, 0.01309141051024199f, 0.01435048412531614f, 0.01435048412531614f, 0.01309141051024199f, 0.01089497376233339f, 0.008271530270576477f, 0.005728822201490402f, 0.003619635012000799f, 0.002086334861814976f, 0.001097041997127235f, 0.0005262381164357066f, 0.0002302826324012131f,
    0.0002100782439811155f, 0.0004800673632416874f, 0.001000790391117334f, 0.001903285388834775f, 0.00330205773934722f, 0.00522619066759944f, 0.007545807864516974f, 0.009939077310264111f, 0.01194280479103327f, 0.01309141051024199f, 0.01309141051024199f, 0.01194280479103327f, 0.009939077310264111f, 0.007545807864516974f, 0.00522619066759944f, 0.00330205773934722f, 0.001903285388834775f, 0.001000790391117334f, 0.0004800673632416874f, 0.0002100782439811155f,
    0.0001748319627949968f, 0.0003995231236331165f, 0.0008328808471560478f, 0.001583957928232849f, 0.002748048631474376f, 0.004349356517195702f, 0.006279794964939356f, 0.008271529339253902f, 0.009939077310264111f, 0.01089497376233339f, 0.01089497376233339f, 0.009939077310264111f, 0.008271529339253902f, 0.006279794964939356f, 0.004349356517195702f, 0.002748048631474376f, 0.001583957928232849f, 0.0008328808471560478f, 0.0003995231236331165f, 0.0001748319627949968f,
    0.0001327334757661447f, 0.0003033203829545528f, 0.0006323281559161842f, 0.001202550483867526f, 0.002086335094645619f, 0.00330205773934722f, 0.004767658654600382f, 0.006279794964939356f, 0.007545807864516974f, 0.008271530270576477f, 0.008271530270576477f, 0.007545807864516974f, 0.006279794964939356f, 0.004767658654600382f, 0.00330205773934722f, 0.002086335094645619f, 0.001202550483867526f, 0.0006323281559161842f, 0.0003033203829545528f, 0.0001327334757661447f,
    9.193058212986216e-005f, 0.0002100782585330308f, 0.0004379475140012801f, 0.0008328807889483869f, 0.001444985857233405f, 0.002286989474669099f, 0.00330205773934722f, 0.004349356517195702f, 0.00522619066759944f, 0.005728822201490402f, 0.005728822201490402f, 0.00522619066759944f, 0.004349356517195702f, 0.00330205773934722f, 0.002286989474669099f, 0.001444985857233405f, 0.0008328807889483869f, 0.0004379475140012801f, 0.0002100782585330308f, 9.193058212986216e-005f,
    5.808438800158911e-005f, 0.0001327334903180599f, 0.0002767078403849155f, 0.0005262380582280457f, 0.0009129836107604206f, 0.001444985857233405f, 0.002086335094645619f, 0.002748048631474376f, 0.00330205773934722f, 0.003619635012000799f, 0.003619635012000799f, 0.00330205773934722f, 0.002748048631474376f, 0.002086335094645619f, 0.001444985857233405f, 0.0009129836107604206f, 0.0005262380582280457f, 0.0002767078403849155f, 0.0001327334903180599f, 5.808438800158911e-005f,
    3.34794785885606e-005f, 7.650675252079964e-005f, 0.0001594926579855382f, 0.0003033203247468919f, 0.0005262380582280457f, 0.0008328807889483869f, 0.001202550483867526f, 0.001583957928232849f, 0.001903285388834775f, 0.002086334861814976f, 0.002086334861814976f, 0.001903285388834775f, 0.001583957928232849f, 0.001202550483867526f, 0.0008328807889483869f, 0.0005262380582280457f, 0.0003033203247468919f, 0.0001594926579855382f, 7.650675252079964e-005f, 3.34794785885606e-005f,
    1.760426494001877e-005f, 4.022897701361217e-005f, 8.386484114453197e-005f, 0.0001594926579855382f, 0.0002767078403849155f, 0.0004379475140012801f, 0.0006323281559161842f, 0.0008328808471560478f, 0.001000790391117334f, 0.001097041997127235f, 0.001097041997127235f, 0.001000790391117334f, 0.0008328808471560478f, 0.0006323281559161842f, 0.0004379475140012801f, 0.0002767078403849155f, 0.0001594926579855382f, 8.386484114453197e-005f, 4.022897701361217e-005f, 1.760426494001877e-005f,
    8.444558261544444e-006f, 1.929736572492402e-005f, 4.022897701361217e-005f, 7.650675252079964e-005f, 0.0001327334903180599f, 0.0002100782585330308f, 0.0003033203829545528f, 0.0003995231236331165f, 0.0004800673632416874f, 0.0005262381164357066f, 0.0005262381164357066f, 0.0004800673632416874f, 0.0003995231236331165f, 0.0003033203829545528f, 0.0002100782585330308f, 0.0001327334903180599f, 7.650675252079964e-005f, 4.022897701361217e-005f, 1.929736572492402e-005f, 8.444558261544444e-006f,
    3.695352233989979e-006f, 8.444558261544444e-006f, 1.760426494001877e-005f, 3.34794785885606e-005f, 5.808438800158911e-005f, 9.193058212986216e-005f, 0.0001327334757661447f, 0.0001748319627949968f, 0.0002100782439811155f, 0.0002302826324012131f, 0.0002302826324012131f, 0.0002100782439811155f, 0.0001748319627949968f, 0.0001327334757661447f, 9.193058212986216e-005f, 5.808438800158911e-005f, 3.34794785885606e-005f, 1.760426494001877e-005f, 8.444558261544444e-006f, 3.695352233989979e-006f
};

// utility for linear filter
inline uchar readerGet(
    IMAGE_INT8 src,
    const float centerX, const float centerY, const float win_offset, const float cos_dir, const float sin_dir,
    int i, int j, int rows, int cols, int elemPerRow
)
{
    float pixel_x = centerX + (win_offset + j) * cos_dir + (win_offset + i) * sin_dir;
    float pixel_y = centerY - (win_offset + j) * sin_dir + (win_offset + i) * cos_dir;
    return read_imgTex(src, sampler, (float2)(pixel_x, pixel_y), rows, cols, elemPerRow);
}

inline float linearFilter(
    IMAGE_INT8 src,
    const float centerX, const float centerY, const float win_offset, const float cos_dir, const float sin_dir,
    float y, float x, int rows, int cols, int elemPerRow
)
{
    x -= 0.5f;
    y -= 0.5f;

    float out = 0.0f;

    const int x1 = round(x);
    const int y1 = round(y);
    const int x2 = x1 + 1;
    const int y2 = y1 + 1;

    uchar src_reg = readerGet(src, centerX, centerY, win_offset, cos_dir, sin_dir, y1, x1, rows, cols, elemPerRow);
    out = out + src_reg * ((x2 - x) * (y2 - y));

    src_reg = readerGet(src, centerX, centerY, win_offset, cos_dir, sin_dir, y1, x2, rows, cols, elemPerRow);
    out = out + src_reg * ((x - x1) * (y2 - y));

    src_reg = readerGet(src, centerX, centerY, win_offset, cos_dir, sin_dir, y2, x1, rows, cols, elemPerRow);
    out = out + src_reg * ((x2 - x) * (y - y1));

    src_reg = readerGet(src, centerX, centerY, win_offset, cos_dir, sin_dir, y2, x2, rows, cols, elemPerRow);
    out = out + src_reg * ((x - x1) * (y - y1));

    return out;
}

void calc_dx_dy(
    IMAGE_INT8 imgTex,
    volatile __local  float *s_dx_bin,
    volatile __local  float *s_dy_bin,
    volatile __local  float *s_PATCH,
    __global const float* featureX,
    __global const float* featureY,
    __global const float* featureSize,
    __global const float* featureDir,
    int rows,
    int cols,
    int elemPerRow
)
{
    const float centerX = featureX[get_group_id(0)];
    const float centerY = featureY[get_group_id(0)];
    const float size = featureSize[get_group_id(0)];
    float descriptor_dir = 360.0f - featureDir[get_group_id(0)];
    if(fabs(descriptor_dir - 360.0f) < FLT_EPSILON)
    {
        descriptor_dir = 0.0f;
    }

    descriptor_dir *= (float)(CV_PI_F / 180.0f);

    /* The sampling intervals and wavelet sized for selecting an orientation
    and building the keypoint descriptor are defined relative to 's' */
    const float s = size * 1.2f / 9.0f;

    /* Extract a window of pixels around the keypoint of size 20s */
    const int win_size = (int)((PATCH_SZ + 1) * s);

    float sin_dir;
    float cos_dir;
    sin_dir = sincos(descriptor_dir, &cos_dir);

    /* Nearest neighbour version (faster) */
    const float win_offset = -(float)(win_size - 1) / 2;

    // Compute sampling points
    // since grids are 2D, need to compute xBlock and yBlock indices
    const int xBlock = (get_group_id(1) & 3);  // get_group_id(1) % 4
    const int yBlock = (get_group_id(1) >> 2); // floor(get_group_id(1)/4)
    const int xIndex = xBlock * 5 + get_local_id(0);
    const int yIndex = yBlock * 5 + get_local_id(1);

    const float icoo = ((float)yIndex / (PATCH_SZ + 1)) * win_size;
    const float jcoo = ((float)xIndex / (PATCH_SZ + 1)) * win_size;

    s_PATCH[get_local_id(1) * 6 + get_local_id(0)] = linearFilter(imgTex, centerX, centerY, win_offset, cos_dir, sin_dir, icoo, jcoo, rows, cols, elemPerRow);

    barrier(CLK_LOCAL_MEM_FENCE);

    if (get_local_id(0) < 5 && get_local_id(1) < 5)
    {
        const int tid = get_local_id(1) * 5 + get_local_id(0);

        const float dw = c_DW[yIndex * PATCH_SZ + xIndex];

        const float vx = (
                             s_PATCH[      get_local_id(1) * 6 + get_local_id(0) + 1] -
                             s_PATCH[      get_local_id(1) * 6 + get_local_id(0)    ] +
                             s_PATCH[(get_local_id(1) + 1) * 6 + get_local_id(0) + 1] -
                             s_PATCH[(get_local_id(1) + 1) * 6 + get_local_id(0)    ])
                         * dw;
        const float vy = (
                             s_PATCH[(get_local_id(1) + 1) * 6 + get_local_id(0)    ] -
                             s_PATCH[      get_local_id(1) * 6 + get_local_id(0)    ] +
                             s_PATCH[(get_local_id(1) + 1) * 6 + get_local_id(0) + 1] -
                             s_PATCH[      get_local_id(1) * 6 + get_local_id(0) + 1])
                         * dw;
        s_dx_bin[tid] = vx;
        s_dy_bin[tid] = vy;
    }
}
void reduce_sum25(
    volatile __local  float* sdata1,
    volatile __local  float* sdata2,
    volatile __local  float* sdata3,
    volatile __local  float* sdata4,
    int tid
)
{
#ifndef WAVE_SIZE
#define WAVE_SIZE 1
#endif
    // first step is to reduce from 25 to 16
    if (tid < 9)
    {
        sdata1[tid] += sdata1[tid + 16];
        sdata2[tid] += sdata2[tid + 16];
        sdata3[tid] += sdata3[tid + 16];
        sdata4[tid] += sdata4[tid + 16];
#if WAVE_SIZE < 16
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 8)
    {
#endif
        sdata1[tid] += sdata1[tid + 8];
        sdata2[tid] += sdata2[tid + 8];
        sdata3[tid] += sdata3[tid + 8];
        sdata4[tid] += sdata4[tid + 8];
#if WAVE_SIZE < 8
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 4)
    {
#endif
        sdata1[tid] += sdata1[tid + 4];
        sdata2[tid] += sdata2[tid + 4];
        sdata3[tid] += sdata3[tid + 4];
        sdata4[tid] += sdata4[tid + 4];
#if WAVE_SIZE < 4
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 2)
    {
#endif
        sdata1[tid] += sdata1[tid + 2];
        sdata2[tid] += sdata2[tid + 2];
        sdata3[tid] += sdata3[tid + 2];
        sdata4[tid] += sdata4[tid + 2];
#if WAVE_SIZE < 2
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 1)
    {
#endif
        sdata1[tid] += sdata1[tid + 1];
        sdata2[tid] += sdata2[tid + 1];
        sdata3[tid] += sdata3[tid + 1];
        sdata4[tid] += sdata4[tid + 1];
    }
#undef WAVE_SIZE
}

__kernel
void compute_descriptors64(
    IMAGE_INT8 imgTex,
    __global float * descriptors,
    __global const float * keypoints,
    int descriptors_step,
    int keypoints_step,
    int rows,
    int cols,
    int img_step
)
{
    descriptors_step /= sizeof(float);
    keypoints_step   /= sizeof(float);
    __global const float * featureX    = keypoints + X_ROW * keypoints_step;
    __global const float * featureY    = keypoints + Y_ROW * keypoints_step;
    __global const float * featureSize = keypoints + SIZE_ROW * keypoints_step;
    __global const float * featureDir  = keypoints + ANGLE_ROW * keypoints_step;

    // 2 floats (dx,dy) for each thread (5x5 sample points in each sub-region)
    volatile __local  float sdx[25];
    volatile __local  float sdy[25];
    volatile __local  float sdxabs[25];
    volatile __local  float sdyabs[25];
    volatile __local  float s_PATCH[6*6];

    calc_dx_dy(imgTex, sdx, sdy, s_PATCH, featureX, featureY, featureSize, featureDir, rows, cols, img_step);
    barrier(CLK_LOCAL_MEM_FENCE);

    const int tid = get_local_id(1) * get_local_size(0) + get_local_id(0);

    if (tid < 25)
    {
        sdxabs[tid] = fabs(sdx[tid]); // |dx| array
        sdyabs[tid] = fabs(sdy[tid]); // |dy| array
    }
    barrier(CLK_LOCAL_MEM_FENCE);

    reduce_sum25(sdx, sdy, sdxabs, sdyabs, tid);

    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 25)
    {
        __global float* descriptors_block = descriptors + descriptors_step * get_group_id(0) + (get_group_id(1) << 2);

        // write dx, dy, |dx|, |dy|
        if (tid == 0)
        {
            descriptors_block[0] = sdx[0];
            descriptors_block[1] = sdy[0];
            descriptors_block[2] = sdxabs[0];
            descriptors_block[3] = sdyabs[0];
        }
    }
}
__kernel
void compute_descriptors128(
    IMAGE_INT8 imgTex,
    __global float * descriptors,
    __global float * keypoints,
    int descriptors_step,
    int keypoints_step,
    int rows,
    int cols,
    int img_step
)
{
    descriptors_step /= sizeof(*descriptors);
    keypoints_step   /= sizeof(*keypoints);

    __global float * featureX   = keypoints + X_ROW * keypoints_step;
    __global float * featureY   = keypoints + Y_ROW * keypoints_step;
    __global float* featureSize = keypoints + SIZE_ROW * keypoints_step;
    __global float* featureDir  = keypoints + ANGLE_ROW * keypoints_step;

    // 2 floats (dx,dy) for each thread (5x5 sample points in each sub-region)
    volatile __local  float sdx[25];
    volatile __local  float sdy[25];

    // sum (reduce) 5x5 area response
    volatile __local  float sd1[25];
    volatile __local  float sd2[25];
    volatile __local  float sdabs1[25];
    volatile __local  float sdabs2[25];
    volatile __local  float s_PATCH[6*6];

    calc_dx_dy(imgTex, sdx, sdy, s_PATCH, featureX, featureY, featureSize, featureDir, rows, cols, img_step);
    barrier(CLK_LOCAL_MEM_FENCE);

    const int tid = get_local_id(1) * get_local_size(0) + get_local_id(0);

    if (tid < 25)
    {
        if (sdy[tid] >= 0)
        {
            sd1[tid] = sdx[tid];
            sdabs1[tid] = fabs(sdx[tid]);
            sd2[tid] = 0;
            sdabs2[tid] = 0;
        }
        else
        {
            sd1[tid] = 0;
            sdabs1[tid] = 0;
            sd2[tid] = sdx[tid];
            sdabs2[tid] = fabs(sdx[tid]);
        }
    }
    barrier(CLK_LOCAL_MEM_FENCE);

    reduce_sum25(sd1, sd2, sdabs1, sdabs2, tid);
    barrier(CLK_LOCAL_MEM_FENCE);

    __global float* descriptors_block = descriptors + descriptors_step * get_group_id(0) + (get_group_id(1) << 3);
    if (tid < 25)
    {
        // write dx (dy >= 0), |dx| (dy >= 0), dx (dy < 0), |dx| (dy < 0)
        if (tid == 0)
        {
            descriptors_block[0] = sd1[0];
            descriptors_block[1] = sdabs1[0];
            descriptors_block[2] = sd2[0];
            descriptors_block[3] = sdabs2[0];
        }

        if (sdx[tid] >= 0)
        {
            sd1[tid] = sdy[tid];
            sdabs1[tid] = fabs(sdy[tid]);
            sd2[tid] = 0;
            sdabs2[tid] = 0;
        }
        else
        {
            sd1[tid] = 0;
            sdabs1[tid] = 0;
            sd2[tid] = sdy[tid];
            sdabs2[tid] = fabs(sdy[tid]);
        }
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    reduce_sum25(sd1, sd2, sdabs1, sdabs2, tid);
    barrier(CLK_LOCAL_MEM_FENCE);

    if (tid < 25)
    {
        // write dy (dx >= 0), |dy| (dx >= 0), dy (dx < 0), |dy| (dx < 0)
        if (tid == 0)
        {
            descriptors_block[4] = sd1[0];
            descriptors_block[5] = sdabs1[0];
            descriptors_block[6] = sd2[0];
            descriptors_block[7] = sdabs2[0];
        }
    }
}

void reduce_sum128(volatile __local  float* smem, int tid)
{
#ifndef WAVE_SIZE
#define WAVE_SIZE 1
#endif

    if (tid < 64)
    {
        smem[tid] += smem[tid + 64];
#if WAVE_SIZE < 64
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 32)
    {
#endif
        smem[tid] += smem[tid + 32];
#if WAVE_SIZE < 32
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 16)
    {
#endif
        smem[tid] += smem[tid + 16];
#if WAVE_SIZE < 16
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 8)
    {
#endif
        smem[tid] += smem[tid + 8];
#if WAVE_SIZE < 8
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 4)
    {
#endif
        smem[tid] += smem[tid + 4];
#if WAVE_SIZE < 4
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 2)
    {
#endif
        smem[tid] += smem[tid + 2];
#if WAVE_SIZE < 2
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 1)
    {
#endif
        smem[tid] += smem[tid + 1];
    }
}


void reduce_sum64(volatile __local  float* smem, int tid)
{
#ifndef WAVE_SIZE
#define WAVE_SIZE 1
#endif
    if (tid < 32)
    {
        smem[tid] += smem[tid + 32];
#if WAVE_SIZE < 32
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 16)
    {
#endif
        smem[tid] += smem[tid + 16];
#if WAVE_SIZE < 16
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 8)
    {
#endif
        smem[tid] += smem[tid + 8];
#if WAVE_SIZE < 8
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 4)
    {
#endif
        smem[tid] += smem[tid + 4];
#if WAVE_SIZE < 4
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 2)
    {
#endif
        smem[tid] += smem[tid + 2];
#if WAVE_SIZE < 2
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 1)
    {
#endif
        smem[tid] += smem[tid + 1];
    }
}

__kernel
void normalize_descriptors128(__global float * descriptors, int descriptors_step)
{
    descriptors_step /= sizeof(*descriptors);
    // no need for thread ID
    __global float* descriptor_base = descriptors + descriptors_step * get_group_id(0);

    // read in the unnormalized descriptor values (squared)
    volatile __local  float sqDesc[128];
    const float lookup = descriptor_base[get_local_id(0)];
    sqDesc[get_local_id(0)] = lookup * lookup;
    barrier(CLK_LOCAL_MEM_FENCE);

    reduce_sum128(sqDesc, get_local_id(0));
    barrier(CLK_LOCAL_MEM_FENCE);

    // compute length (square root)
    volatile __local  float len;
    if (get_local_id(0) == 0)
    {
        len = sqrt(sqDesc[0]);
    }
    barrier(CLK_LOCAL_MEM_FENCE);

    // normalize and store in output
    descriptor_base[get_local_id(0)] = lookup / len;
}
__kernel
void normalize_descriptors64(__global float * descriptors, int descriptors_step)
{
    descriptors_step /= sizeof(*descriptors);
    // no need for thread ID
    __global float* descriptor_base = descriptors + descriptors_step * get_group_id(0);

    // read in the unnormalized descriptor values (squared)
    volatile __local  float sqDesc[64];
    const float lookup = descriptor_base[get_local_id(0)];
    sqDesc[get_local_id(0)] = lookup * lookup;
    barrier(CLK_LOCAL_MEM_FENCE);

    reduce_sum64(sqDesc, get_local_id(0));
    barrier(CLK_LOCAL_MEM_FENCE);

    // compute length (square root)
    volatile __local  float len;
    if (get_local_id(0) == 0)
    {
        len = sqrt(sqDesc[0]);
    }
    barrier(CLK_LOCAL_MEM_FENCE);

    // normalize and store in output
    descriptor_base[get_local_id(0)] = lookup / len;
}