p3p.cpp 13.7 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
#include <cstring>
#include <cmath>
#include <iostream>

#include "polynom_solver.h"
#include "p3p.h"

void p3p::init_inverse_parameters()
{
    inv_fx = 1. / fx;
    inv_fy = 1. / fy;
    cx_fx = cx / fx;
    cy_fy = cy / fy;
}

p3p::p3p(cv::Mat cameraMatrix)
{
    if (cameraMatrix.depth() == CV_32F)
        init_camera_parameters<float>(cameraMatrix);
    else
        init_camera_parameters<double>(cameraMatrix);
    init_inverse_parameters();
}

p3p::p3p(double _fx, double _fy, double _cx, double _cy)
{
    fx = _fx;
    fy = _fy;
    cx = _cx;
    cy = _cy;
    init_inverse_parameters();
}

bool p3p::solve(cv::Mat& R, cv::Mat& tvec, const cv::Mat& opoints, const cv::Mat& ipoints)
{
    double rotation_matrix[3][3], translation[3];
    std::vector<double> points;
    if (opoints.depth() == ipoints.depth())
    {
        if (opoints.depth() == CV_32F)
            extract_points<cv::Point3f,cv::Point2f>(opoints, ipoints, points);
        else
            extract_points<cv::Point3d,cv::Point2d>(opoints, ipoints, points);
    }
    else if (opoints.depth() == CV_32F)
        extract_points<cv::Point3f,cv::Point2d>(opoints, ipoints, points);
    else
        extract_points<cv::Point3d,cv::Point2f>(opoints, ipoints, points);

    bool result = solve(rotation_matrix, translation, points[0], points[1], points[2], points[3], points[4], points[5],
          points[6], points[7], points[8], points[9], points[10], points[11], points[12], points[13], points[14],
          points[15], points[16], points[17], points[18], points[19]);
    cv::Mat(3, 1, CV_64F, translation).copyTo(tvec);
    cv::Mat(3, 3, CV_64F, rotation_matrix).copyTo(R);
    return result;
}

bool p3p::solve(double R[3][3], double t[3],
    double mu0, double mv0,   double X0, double Y0, double Z0,
    double mu1, double mv1,   double X1, double Y1, double Z1,
    double mu2, double mv2,   double X2, double Y2, double Z2,
    double mu3, double mv3,   double X3, double Y3, double Z3)
{
    double Rs[4][3][3], ts[4][3];

    int n = solve(Rs, ts, mu0, mv0, X0, Y0, Z0,  mu1, mv1, X1, Y1, Z1, mu2, mv2, X2, Y2, Z2);

    if (n == 0)
        return false;

    int ns = 0;
    double min_reproj = 0;
    for(int i = 0; i < n; i++) {
        double X3p = Rs[i][0][0] * X3 + Rs[i][0][1] * Y3 + Rs[i][0][2] * Z3 + ts[i][0];
        double Y3p = Rs[i][1][0] * X3 + Rs[i][1][1] * Y3 + Rs[i][1][2] * Z3 + ts[i][1];
        double Z3p = Rs[i][2][0] * X3 + Rs[i][2][1] * Y3 + Rs[i][2][2] * Z3 + ts[i][2];
        double mu3p = cx + fx * X3p / Z3p;
        double mv3p = cy + fy * Y3p / Z3p;
        double reproj = (mu3p - mu3) * (mu3p - mu3) + (mv3p - mv3) * (mv3p - mv3);
        if (i == 0 || min_reproj > reproj) {
            ns = i;
            min_reproj = reproj;
        }
    }

    for(int i = 0; i < 3; i++) {
        for(int j = 0; j < 3; j++)
            R[i][j] = Rs[ns][i][j];
        t[i] = ts[ns][i];
    }

    return true;
}

int p3p::solve(double R[4][3][3], double t[4][3],
    double mu0, double mv0,   double X0, double Y0, double Z0,
    double mu1, double mv1,   double X1, double Y1, double Z1,
    double mu2, double mv2,   double X2, double Y2, double Z2)
{
    double mk0, mk1, mk2;
    double norm;

    mu0 = inv_fx * mu0 - cx_fx;
    mv0 = inv_fy * mv0 - cy_fy;
    norm = sqrt(mu0 * mu0 + mv0 * mv0 + 1);
    mk0 = 1. / norm; mu0 *= mk0; mv0 *= mk0;

    mu1 = inv_fx * mu1 - cx_fx;
    mv1 = inv_fy * mv1 - cy_fy;
    norm = sqrt(mu1 * mu1 + mv1 * mv1 + 1);
    mk1 = 1. / norm; mu1 *= mk1; mv1 *= mk1;

    mu2 = inv_fx * mu2 - cx_fx;
    mv2 = inv_fy * mv2 - cy_fy;
    norm = sqrt(mu2 * mu2 + mv2 * mv2 + 1);
    mk2 = 1. / norm; mu2 *= mk2; mv2 *= mk2;

    double distances[3];
    distances[0] = sqrt( (X1 - X2) * (X1 - X2) + (Y1 - Y2) * (Y1 - Y2) + (Z1 - Z2) * (Z1 - Z2) );
    distances[1] = sqrt( (X0 - X2) * (X0 - X2) + (Y0 - Y2) * (Y0 - Y2) + (Z0 - Z2) * (Z0 - Z2) );
    distances[2] = sqrt( (X0 - X1) * (X0 - X1) + (Y0 - Y1) * (Y0 - Y1) + (Z0 - Z1) * (Z0 - Z1) );

    // Calculate angles
    double cosines[3];
    cosines[0] = mu1 * mu2 + mv1 * mv2 + mk1 * mk2;
    cosines[1] = mu0 * mu2 + mv0 * mv2 + mk0 * mk2;
    cosines[2] = mu0 * mu1 + mv0 * mv1 + mk0 * mk1;

    double lengths[4][3];
    int n = solve_for_lengths(lengths, distances, cosines);

    int nb_solutions = 0;
    for(int i = 0; i < n; i++) {
        double M_orig[3][3];

        M_orig[0][0] = lengths[i][0] * mu0;
        M_orig[0][1] = lengths[i][0] * mv0;
        M_orig[0][2] = lengths[i][0] * mk0;

        M_orig[1][0] = lengths[i][1] * mu1;
        M_orig[1][1] = lengths[i][1] * mv1;
        M_orig[1][2] = lengths[i][1] * mk1;

        M_orig[2][0] = lengths[i][2] * mu2;
        M_orig[2][1] = lengths[i][2] * mv2;
        M_orig[2][2] = lengths[i][2] * mk2;

        if (!align(M_orig, X0, Y0, Z0, X1, Y1, Z1, X2, Y2, Z2, R[nb_solutions], t[nb_solutions]))
            continue;

        nb_solutions++;
    }

    return nb_solutions;
}

/// Given 3D distances between three points and cosines of 3 angles at the apex, calculates
/// the lentghs of the line segments connecting projection center (P) and the three 3D points (A, B, C).
/// Returned distances are for |PA|, |PB|, |PC| respectively.
/// Only the solution to the main branch.
/// Reference : X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem"
/// IEEE Trans. on PAMI, vol. 25, No. 8, August 2003
/// \param lengths3D Lengths of line segments up to four solutions.
/// \param dist3D Distance between 3D points in pairs |BC|, |AC|, |AB|.
/// \param cosines Cosine of the angles /_BPC, /_APC, /_APB.
/// \returns Number of solutions.
/// WARNING: NOT ALL THE DEGENERATE CASES ARE IMPLEMENTED

int p3p::solve_for_lengths(double lengths[4][3], double distances[3], double cosines[3])
{
    double p = cosines[0] * 2;
    double q = cosines[1] * 2;
    double r = cosines[2] * 2;

    double inv_d22 = 1. / (distances[2] * distances[2]);
    double a = inv_d22 * (distances[0] * distances[0]);
    double b = inv_d22 * (distances[1] * distances[1]);

    double a2 = a * a, b2 = b * b, p2 = p * p, q2 = q * q, r2 = r * r;
    double pr = p * r, pqr = q * pr;

    // Check reality condition (the four points should not be coplanar)
    if (p2 + q2 + r2 - pqr - 1 == 0)
        return 0;

    double ab = a * b, a_2 = 2*a;

    double A = -2 * b + b2 + a2 + 1 + ab*(2 - r2) - a_2;

    // Check reality condition
    if (A == 0) return 0;

    double a_4 = 4*a;

    double B = q*(-2*(ab + a2 + 1 - b) + r2*ab + a_4) + pr*(b - b2 + ab);
    double C = q2 + b2*(r2 + p2 - 2) - b*(p2 + pqr) - ab*(r2 + pqr) + (a2 - a_2)*(2 + q2) + 2;
    double D = pr*(ab-b2+b) + q*((p2-2)*b + 2 * (ab - a2) + a_4 - 2);
    double E = 1 + 2*(b - a - ab) + b2 - b*p2 + a2;

    double temp = (p2*(a-1+b) + r2*(a-1-b) + pqr - a*pqr);
    double b0 = b * temp * temp;
    // Check reality condition
    if (b0 == 0)
        return 0;

    double real_roots[4];
    int n = solve_deg4(A, B, C, D, E,  real_roots[0], real_roots[1], real_roots[2], real_roots[3]);

    if (n == 0)
        return 0;

    int nb_solutions = 0;
    double r3 = r2*r, pr2 = p*r2, r3q = r3 * q;
    double inv_b0 = 1. / b0;

    // For each solution of x
    for(int i = 0; i < n; i++) {
        double x = real_roots[i];

        // Check reality condition
        if (x <= 0)
            continue;

        double x2 = x*x;

        double b1 =
            ((1-a-b)*x2 + (q*a-q)*x + 1 - a + b) *
            (((r3*(a2 + ab*(2 - r2) - a_2 + b2 - 2*b + 1)) * x +

            (r3q*(2*(b-a2) + a_4 + ab*(r2 - 2) - 2) + pr2*(1 + a2 + 2*(ab-a-b) + r2*(b - b2) + b2))) * x2 +

            (r3*(q2*(1-2*a+a2) + r2*(b2-ab) - a_4 + 2*(a2 - b2) + 2) + r*p2*(b2 + 2*(ab - b - a) + 1 + a2) + pr2*q*(a_4 + 2*(b - ab - a2) - 2 - r2*b)) * x +

            2*r3q*(a_2 - b - a2 + ab - 1) + pr2*(q2 - a_4 + 2*(a2 - b2) + r2*b + q2*(a2 - a_2) + 2) +
            p2*(p*(2*(ab - a - b) + a2 + b2 + 1) + 2*q*r*(b + a_2 - a2 - ab - 1)));

        // Check reality condition
        if (b1 <= 0)
            continue;

        double y = inv_b0 * b1;
        double v = x2 + y*y - x*y*r;

        if (v <= 0)
            continue;

        double Z = distances[2] / sqrt(v);
        double X = x * Z;
        double Y = y * Z;

        lengths[nb_solutions][0] = X;
        lengths[nb_solutions][1] = Y;
        lengths[nb_solutions][2] = Z;

        nb_solutions++;
    }

    return nb_solutions;
}

bool p3p::align(double M_end[3][3],
    double X0, double Y0, double Z0,
    double X1, double Y1, double Z1,
    double X2, double Y2, double Z2,
    double R[3][3], double T[3])
{
    // Centroids:
    double C_start[3], C_end[3];
    for(int i = 0; i < 3; i++) C_end[i] = (M_end[0][i] + M_end[1][i] + M_end[2][i]) / 3;
    C_start[0] = (X0 + X1 + X2) / 3;
    C_start[1] = (Y0 + Y1 + Y2) / 3;
    C_start[2] = (Z0 + Z1 + Z2) / 3;

    // Covariance matrix s:
    double s[3 * 3];
    for(int j = 0; j < 3; j++) {
        s[0 * 3 + j] = (X0 * M_end[0][j] + X1 * M_end[1][j] + X2 * M_end[2][j]) / 3 - C_end[j] * C_start[0];
        s[1 * 3 + j] = (Y0 * M_end[0][j] + Y1 * M_end[1][j] + Y2 * M_end[2][j]) / 3 - C_end[j] * C_start[1];
        s[2 * 3 + j] = (Z0 * M_end[0][j] + Z1 * M_end[1][j] + Z2 * M_end[2][j]) / 3 - C_end[j] * C_start[2];
    }

    double Qs[16], evs[4], U[16];

    Qs[0 * 4 + 0] = s[0 * 3 + 0] + s[1 * 3 + 1] + s[2 * 3 + 2];
    Qs[1 * 4 + 1] = s[0 * 3 + 0] - s[1 * 3 + 1] - s[2 * 3 + 2];
    Qs[2 * 4 + 2] = s[1 * 3 + 1] - s[2 * 3 + 2] - s[0 * 3 + 0];
    Qs[3 * 4 + 3] = s[2 * 3 + 2] - s[0 * 3 + 0] - s[1 * 3 + 1];

    Qs[1 * 4 + 0] = Qs[0 * 4 + 1] = s[1 * 3 + 2] - s[2 * 3 + 1];
    Qs[2 * 4 + 0] = Qs[0 * 4 + 2] = s[2 * 3 + 0] - s[0 * 3 + 2];
    Qs[3 * 4 + 0] = Qs[0 * 4 + 3] = s[0 * 3 + 1] - s[1 * 3 + 0];
    Qs[2 * 4 + 1] = Qs[1 * 4 + 2] = s[1 * 3 + 0] + s[0 * 3 + 1];
    Qs[3 * 4 + 1] = Qs[1 * 4 + 3] = s[2 * 3 + 0] + s[0 * 3 + 2];
    Qs[3 * 4 + 2] = Qs[2 * 4 + 3] = s[2 * 3 + 1] + s[1 * 3 + 2];

    jacobi_4x4(Qs, evs, U);

    // Looking for the largest eigen value:
    int i_ev = 0;
    double ev_max = evs[i_ev];
    for(int i = 1; i < 4; i++)
        if (evs[i] > ev_max)
            ev_max = evs[i_ev = i];

    // Quaternion:
    double q[4];
    for(int i = 0; i < 4; i++)
        q[i] = U[i * 4 + i_ev];

    double q02 = q[0] * q[0], q12 = q[1] * q[1], q22 = q[2] * q[2], q32 = q[3] * q[3];
    double q0_1 = q[0] * q[1], q0_2 = q[0] * q[2], q0_3 = q[0] * q[3];
    double q1_2 = q[1] * q[2], q1_3 = q[1] * q[3];
    double q2_3 = q[2] * q[3];

    R[0][0] = q02 + q12 - q22 - q32;
    R[0][1] = 2. * (q1_2 - q0_3);
    R[0][2] = 2. * (q1_3 + q0_2);

    R[1][0] = 2. * (q1_2 + q0_3);
    R[1][1] = q02 + q22 - q12 - q32;
    R[1][2] = 2. * (q2_3 - q0_1);

    R[2][0] = 2. * (q1_3 - q0_2);
    R[2][1] = 2. * (q2_3 + q0_1);
    R[2][2] = q02 + q32 - q12 - q22;

    for(int i = 0; i < 3; i++)
        T[i] = C_end[i] - (R[i][0] * C_start[0] + R[i][1] * C_start[1] + R[i][2] * C_start[2]);

    return true;
}

bool p3p::jacobi_4x4(double * A, double * D, double * U)
{
    double B[4], Z[4];
    double Id[16] = {1., 0., 0., 0.,
        0., 1., 0., 0.,
        0., 0., 1., 0.,
        0., 0., 0., 1.};

    memcpy(U, Id, 16 * sizeof(double));

    B[0] = A[0]; B[1] = A[5]; B[2] = A[10]; B[3] = A[15];
    memcpy(D, B, 4 * sizeof(double));
    memset(Z, 0, 4 * sizeof(double));

    for(int iter = 0; iter < 50; iter++) {
        double sum = fabs(A[1]) + fabs(A[2]) + fabs(A[3]) + fabs(A[6]) + fabs(A[7]) + fabs(A[11]);

        if (sum == 0.0)
            return true;

        double tresh =  (iter < 3) ? 0.2 * sum / 16. : 0.0;
        for(int i = 0; i < 3; i++) {
            double * pAij = A + 5 * i + 1;
            for(int j = i + 1 ; j < 4; j++) {
                double Aij = *pAij;
                double eps_machine = 100.0 * fabs(Aij);

                if ( iter > 3 && fabs(D[i]) + eps_machine == fabs(D[i]) && fabs(D[j]) + eps_machine == fabs(D[j]) )
                    *pAij = 0.0;
                else if (fabs(Aij) > tresh) {
                    double hh = D[j] - D[i], t;
                    if (fabs(hh) + eps_machine == fabs(hh))
                        t = Aij / hh;
                    else {
                        double theta = 0.5 * hh / Aij;
                        t = 1.0 / (fabs(theta) + sqrt(1.0 + theta * theta));
                        if (theta < 0.0) t = -t;
                    }

                    hh = t * Aij;
                    Z[i] -= hh;
                    Z[j] += hh;
                    D[i] -= hh;
                    D[j] += hh;
                    *pAij = 0.0;

                    double c = 1.0 / sqrt(1 + t * t);
                    double s = t * c;
                    double tau = s / (1.0 + c);
                    for(int k = 0; k <= i - 1; k++) {
                        double g = A[k * 4 + i], h = A[k * 4 + j];
                        A[k * 4 + i] = g - s * (h + g * tau);
                        A[k * 4 + j] = h + s * (g - h * tau);
                    }
                    for(int k = i + 1; k <= j - 1; k++) {
                        double g = A[i * 4 + k], h = A[k * 4 + j];
                        A[i * 4 + k] = g - s * (h + g * tau);
                        A[k * 4 + j] = h + s * (g - h * tau);
                    }
                    for(int k = j + 1; k < 4; k++) {
                        double g = A[i * 4 + k], h = A[j * 4 + k];
                        A[i * 4 + k] = g - s * (h + g * tau);
                        A[j * 4 + k] = h + s * (g - h * tau);
                    }
                    for(int k = 0; k < 4; k++) {
                        double g = U[k * 4 + i], h = U[k * 4 + j];
                        U[k * 4 + i] = g - s * (h + g * tau);
                        U[k * 4 + j] = h + s * (g - h * tau);
                    }
                }
                pAij++;
            }
        }

        for(int i = 0; i < 4; i++) B[i] += Z[i];
        memcpy(D, B, 4 * sizeof(double));
        memset(Z, 0, 4 * sizeof(double));
    }

    return false;
}