3calibration.cpp 12.1 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/*
 * 3calibration.cpp -- Calibrate 3 cameras in a horizontal line together.
 */

#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/imgcodecs/imgcodecs.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/core/utility.hpp"

#include <stdio.h>
#include <string.h>
#include <time.h>

using namespace cv;
using namespace std;

enum { DETECTION = 0, CAPTURING = 1, CALIBRATED = 2 };

static void help()
{
        printf( "\nThis is a camera calibration sample that calibrates 3 horizontally placed cameras together.\n"
               "Usage: 3calibration\n"
               "     -w=<board_width>         # the number of inner corners per one of board dimension\n"
               "     -h=<board_height>        # the number of inner corners per another board dimension\n"
               "     [-s=<squareSize>]       # square size in some user-defined units (1 by default)\n"
               "     [-o=<out_camera_params>] # the output filename for intrinsic [and extrinsic] parameters\n"
               "     [-zt]                    # assume zero tangential distortion\n"
               "     [-a=<aspectRatio>]      # fix aspect ratio (fx/fy)\n"
               "     [-p]                     # fix the principal point at the center\n"
               "     [input_data]             # input data - text file with a list of the images of the board\n"
               "\n" );

}

static void calcChessboardCorners(Size boardSize, float squareSize, vector<Point3f>& corners)
{
    corners.resize(0);

    for( int i = 0; i < boardSize.height; i++ )
        for( int j = 0; j < boardSize.width; j++ )
            corners.push_back(Point3f(float(j*squareSize),
                                      float(i*squareSize), 0));
}

static bool run3Calibration(vector<vector<Point2f> > imagePoints1,
                            vector<vector<Point2f> > imagePoints2,
                            vector<vector<Point2f> > imagePoints3,
                            Size imageSize, Size boardSize,
                            float squareSize, float aspectRatio,
                            int flags,
                            Mat& cameraMatrix1, Mat& distCoeffs1,
                            Mat& cameraMatrix2, Mat& distCoeffs2,
                            Mat& cameraMatrix3, Mat& distCoeffs3,
                            Mat& R12, Mat& T12, Mat& R13, Mat& T13)
{
    int c, i;

    // step 1: calibrate each camera individually
    vector<vector<Point3f> > objpt(1);
    vector<vector<Point2f> > imgpt;
    calcChessboardCorners(boardSize, squareSize, objpt[0]);
    vector<Mat> rvecs, tvecs;

    for( c = 1; c <= 3; c++ )
    {
        const vector<vector<Point2f> >& imgpt0 = c == 1 ? imagePoints1 : c == 2 ? imagePoints2 : imagePoints3;
        imgpt.clear();
        int N = 0;
        for( i = 0; i < (int)imgpt0.size(); i++ )
            if( !imgpt0[i].empty() )
            {
                imgpt.push_back(imgpt0[i]);
                N += (int)imgpt0[i].size();
            }

        if( imgpt.size() < 3 )
        {
            printf("Error: not enough views for camera %d\n", c);
            return false;
        }

        objpt.resize(imgpt.size(),objpt[0]);

        Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
        if( flags & CALIB_FIX_ASPECT_RATIO )
            cameraMatrix.at<double>(0,0) = aspectRatio;

        Mat distCoeffs = Mat::zeros(5, 1, CV_64F);

        double err = calibrateCamera(objpt, imgpt, imageSize, cameraMatrix,
                        distCoeffs, rvecs, tvecs,
                        flags|CALIB_FIX_K3/*|CALIB_FIX_K4|CALIB_FIX_K5|CALIB_FIX_K6*/);
        bool ok = checkRange(cameraMatrix) && checkRange(distCoeffs);
        if(!ok)
        {
            printf("Error: camera %d was not calibrated\n", c);
            return false;
        }
        printf("Camera %d calibration reprojection error = %g\n", c, sqrt(err/N));

        if( c == 1 )
            cameraMatrix1 = cameraMatrix, distCoeffs1 = distCoeffs;
        else if( c == 2 )
            cameraMatrix2 = cameraMatrix, distCoeffs2 = distCoeffs;
        else
            cameraMatrix3 = cameraMatrix, distCoeffs3 = distCoeffs;
    }

    vector<vector<Point2f> > imgpt_right;

    // step 2: calibrate (1,2) and (3,2) pairs
    for( c = 2; c <= 3; c++ )
    {
        const vector<vector<Point2f> >& imgpt0 = c == 2 ? imagePoints2 : imagePoints3;

        imgpt.clear();
        imgpt_right.clear();
        int N = 0;

        for( i = 0; i < (int)std::min(imagePoints1.size(), imgpt0.size()); i++ )
            if( !imagePoints1.empty() && !imgpt0[i].empty() )
            {
                imgpt.push_back(imagePoints1[i]);
                imgpt_right.push_back(imgpt0[i]);
                N += (int)imgpt0[i].size();
            }

        if( imgpt.size() < 3 )
        {
            printf("Error: not enough shared views for cameras 1 and %d\n", c);
            return false;
        }

        objpt.resize(imgpt.size(),objpt[0]);
        Mat cameraMatrix = c == 2 ? cameraMatrix2 : cameraMatrix3;
        Mat distCoeffs = c == 2 ? distCoeffs2 : distCoeffs3;
        Mat R, T, E, F;
        double err = stereoCalibrate(objpt, imgpt, imgpt_right, cameraMatrix1, distCoeffs1,
                                     cameraMatrix, distCoeffs,
                                     imageSize, R, T, E, F,
                                     CALIB_FIX_INTRINSIC,
                                     TermCriteria(TermCriteria::COUNT, 30, 0));
        printf("Pair (1,%d) calibration reprojection error = %g\n", c, sqrt(err/(N*2)));
        if( c == 2 )
        {
            cameraMatrix2 = cameraMatrix;
            distCoeffs2 = distCoeffs;
            R12 = R; T12 = T;
        }
        else
        {
            R13 = R; T13 = T;
        }
    }

    return true;
}

static bool readStringList( const string& filename, vector<string>& l )
{
    l.resize(0);
    FileStorage fs(filename, FileStorage::READ);
    if( !fs.isOpened() )
        return false;
    FileNode n = fs.getFirstTopLevelNode();
    if( n.type() != FileNode::SEQ )
        return false;
    FileNodeIterator it = n.begin(), it_end = n.end();
    for( ; it != it_end; ++it )
        l.push_back((string)*it);
    return true;
}


int main( int argc, char** argv )
{
    int i, k;
    int flags = 0;
    Size boardSize, imageSize;
    float squareSize, aspectRatio;
    string outputFilename;
    string inputFilename = "";

    vector<vector<Point2f> > imgpt[3];
    vector<string> imageList;

    cv::CommandLineParser parser(argc, argv,
        "{help ||}{w||}{h||}{s|1|}{o|out_camera_data.yml|}"
        "{zt||}{a|1|}{p||}{@input||}");
    if (parser.has("help"))
    {
        help();
        return 0;
    }
    boardSize.width = parser.get<int>("w");
    boardSize.height = parser.get<int>("h");
    squareSize = parser.get<float>("s");
    aspectRatio = parser.get<float>("a");
    if (parser.has("a"))
        flags |= CALIB_FIX_ASPECT_RATIO;
    if (parser.has("zt"))
        flags |= CALIB_ZERO_TANGENT_DIST;
    if (parser.has("p"))
        flags |= CALIB_FIX_PRINCIPAL_POINT;
    outputFilename = parser.get<string>("o");
    inputFilename = parser.get<string>("@input");
    if (!parser.check())
    {
        help();
        parser.printErrors();
        return -1;
    }
    if (boardSize.width <= 0)
        return fprintf( stderr, "Invalid board width\n" ), -1;
    if (boardSize.height <= 0)
        return fprintf( stderr, "Invalid board height\n" ), -1;
    if (squareSize <= 0)
        return fprintf( stderr, "Invalid board square width\n" ), -1;
    if (aspectRatio <= 0)
        return printf("Invalid aspect ratio\n" ), -1;
    if( inputFilename.empty() ||
       !readStringList(inputFilename, imageList) ||
       imageList.size() == 0 || imageList.size() % 3 != 0 )
    {
        printf("Error: the input image list is not specified, or can not be read, or the number of files is not divisible by 3\n");
        return -1;
    }

    Mat view, viewGray;
    Mat cameraMatrix[3], distCoeffs[3], R[3], P[3], R12, T12;
    for( k = 0; k < 3; k++ )
    {
        cameraMatrix[k] = Mat_<double>::eye(3,3);
        cameraMatrix[k].at<double>(0,0) = aspectRatio;
        cameraMatrix[k].at<double>(1,1) = 1;
        distCoeffs[k] = Mat_<double>::zeros(5,1);
    }
    Mat R13=Mat_<double>::eye(3,3), T13=Mat_<double>::zeros(3,1);

    FileStorage fs;
    namedWindow( "Image View", 0 );

    for( k = 0; k < 3; k++ )
        imgpt[k].resize(imageList.size()/3);

    for( i = 0; i < (int)(imageList.size()/3); i++ )
    {
        for( k = 0; k < 3; k++ )
        {
            int k1 = k == 0 ? 2 : k == 1 ? 0 : 1;
            printf("%s\n", imageList[i*3+k].c_str());
            view = imread(imageList[i*3+k], 1);

            if(!view.empty())
            {
                vector<Point2f> ptvec;
                imageSize = view.size();
                cvtColor(view, viewGray, COLOR_BGR2GRAY);
                bool found = findChessboardCorners( view, boardSize, ptvec, CALIB_CB_ADAPTIVE_THRESH );

                drawChessboardCorners( view, boardSize, Mat(ptvec), found );
                if( found )
                {
                    imgpt[k1][i].resize(ptvec.size());
                    std::copy(ptvec.begin(), ptvec.end(), imgpt[k1][i].begin());
                }
                //imshow("view", view);
                //int c = waitKey(0) & 255;
                //if( c == 27 || c == 'q' || c == 'Q' )
                //    return -1;
            }
        }
    }

    printf("Running calibration ...\n");

    run3Calibration(imgpt[0], imgpt[1], imgpt[2], imageSize,
                    boardSize, squareSize, aspectRatio, flags|CALIB_FIX_K4|CALIB_FIX_K5,
                    cameraMatrix[0], distCoeffs[0],
                    cameraMatrix[1], distCoeffs[1],
                    cameraMatrix[2], distCoeffs[2],
                    R12, T12, R13, T13);

    fs.open(outputFilename, FileStorage::WRITE);

    fs << "cameraMatrix1" << cameraMatrix[0];
    fs << "cameraMatrix2" << cameraMatrix[1];
    fs << "cameraMatrix3" << cameraMatrix[2];

    fs << "distCoeffs1" << distCoeffs[0];
    fs << "distCoeffs2" << distCoeffs[1];
    fs << "distCoeffs3" << distCoeffs[2];

    fs << "R12" << R12;
    fs << "T12" << T12;
    fs << "R13" << R13;
    fs << "T13" << T13;

    fs << "imageWidth" << imageSize.width;
    fs << "imageHeight" << imageSize.height;

    Mat Q;

    // step 3: find rectification transforms
    double ratio = rectify3Collinear(cameraMatrix[0], distCoeffs[0], cameraMatrix[1],
             distCoeffs[1], cameraMatrix[2], distCoeffs[2],
             imgpt[0], imgpt[2],
             imageSize, R12, T12, R13, T13,
             R[0], R[1], R[2], P[0], P[1], P[2], Q, -1.,
             imageSize, 0, 0, CALIB_ZERO_DISPARITY);
    Mat map1[3], map2[3];

    fs << "R1" << R[0];
    fs << "R2" << R[1];
    fs << "R3" << R[2];

    fs << "P1" << P[0];
    fs << "P2" << P[1];
    fs << "P3" << P[2];

    fs << "disparityRatio" << ratio;
    fs.release();

    printf("Disparity ratio = %g\n", ratio);

    for( k = 0; k < 3; k++ )
        initUndistortRectifyMap(cameraMatrix[k], distCoeffs[k], R[k], P[k], imageSize, CV_16SC2, map1[k], map2[k]);

    Mat canvas(imageSize.height, imageSize.width*3, CV_8UC3), small_canvas;
    destroyWindow("view");
    canvas = Scalar::all(0);

    for( i = 0; i < (int)(imageList.size()/3); i++ )
    {
        canvas = Scalar::all(0);
        for( k = 0; k < 3; k++ )
        {
            int k1 = k == 0 ? 2 : k == 1 ? 0 : 1;
            int k2 = k == 0 ? 1 : k == 1 ? 0 : 2;
            view = imread(imageList[i*3+k], 1);

            if(view.empty())
                continue;

            Mat rview = canvas.colRange(k2*imageSize.width, (k2+1)*imageSize.width);
            remap(view, rview, map1[k1], map2[k1], INTER_LINEAR);
        }
        printf("%s %s %s\n", imageList[i*3].c_str(), imageList[i*3+1].c_str(), imageList[i*3+2].c_str());
        resize( canvas, small_canvas, Size(1500, 1500/3) );
        for( k = 0; k < small_canvas.rows; k += 16 )
            line(small_canvas, Point(0, k), Point(small_canvas.cols, k), Scalar(0,255,0), 1);
        imshow("rectified", small_canvas);
        int c = waitKey(0);
        if( c == 27 || c == 'q' || c == 'Q' )
            break;
    }

    return 0;
}