segmentation.cpp 19.5 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

/****************************************************************************************\
*                                       Watershed                                        *
\****************************************************************************************/

namespace cv
{
// A node represents a pixel to label
struct WSNode
{
    int next;
    int mask_ofs;
    int img_ofs;
};

// Queue for WSNodes
struct WSQueue
{
    WSQueue() { first = last = 0; }
    int first, last;
};


static int
allocWSNodes( std::vector<WSNode>& storage )
{
    int sz = (int)storage.size();
    int newsz = MAX(128, sz*3/2);

    storage.resize(newsz);
    if( sz == 0 )
    {
        storage[0].next = 0;
        sz = 1;
    }
    for( int i = sz; i < newsz-1; i++ )
        storage[i].next = i+1;
    storage[newsz-1].next = 0;
    return sz;
}

}


void cv::watershed( InputArray _src, InputOutputArray _markers )
{
    // Labels for pixels
    const int IN_QUEUE = -2; // Pixel visited
    const int WSHED = -1; // Pixel belongs to watershed

    // possible bit values = 2^8
    const int NQ = 256;

    Mat src = _src.getMat(), dst = _markers.getMat();
    Size size = src.size();

    // Vector of every created node
    std::vector<WSNode> storage;
    int free_node = 0, node;
    // Priority queue of queues of nodes
    // from high priority (0) to low priority (255)
    WSQueue q[NQ];
    // Non-empty queue with highest priority
    int active_queue;
    int i, j;
    // Color differences
    int db, dg, dr;
    int subs_tab[513];

    // MAX(a,b) = b + MAX(a-b,0)
    #define ws_max(a,b) ((b) + subs_tab[(a)-(b)+NQ])
    // MIN(a,b) = a - MAX(a-b,0)
    #define ws_min(a,b) ((a) - subs_tab[(a)-(b)+NQ])

    // Create a new node with offsets mofs and iofs in queue idx
    #define ws_push(idx,mofs,iofs)          \
    {                                       \
        if( !free_node )                    \
            free_node = allocWSNodes( storage );\
        node = free_node;                   \
        free_node = storage[free_node].next;\
        storage[node].next = 0;             \
        storage[node].mask_ofs = mofs;      \
        storage[node].img_ofs = iofs;       \
        if( q[idx].last )                   \
            storage[q[idx].last].next=node; \
        else                                \
            q[idx].first = node;            \
        q[idx].last = node;                 \
    }

    // Get next node from queue idx
    #define ws_pop(idx,mofs,iofs)           \
    {                                       \
        node = q[idx].first;                \
        q[idx].first = storage[node].next;  \
        if( !storage[node].next )           \
            q[idx].last = 0;                \
        storage[node].next = free_node;     \
        free_node = node;                   \
        mofs = storage[node].mask_ofs;      \
        iofs = storage[node].img_ofs;       \
    }

    // Get highest absolute channel difference in diff
    #define c_diff(ptr1,ptr2,diff)           \
    {                                        \
        db = std::abs((ptr1)[0] - (ptr2)[0]);\
        dg = std::abs((ptr1)[1] - (ptr2)[1]);\
        dr = std::abs((ptr1)[2] - (ptr2)[2]);\
        diff = ws_max(db,dg);                \
        diff = ws_max(diff,dr);              \
        assert( 0 <= diff && diff <= 255 );  \
    }

    CV_Assert( src.type() == CV_8UC3 && dst.type() == CV_32SC1 );
    CV_Assert( src.size() == dst.size() );

    // Current pixel in input image
    const uchar* img = src.ptr();
    // Step size to next row in input image
    int istep = int(src.step/sizeof(img[0]));

    // Current pixel in mask image
    int* mask = dst.ptr<int>();
    // Step size to next row in mask image
    int mstep = int(dst.step / sizeof(mask[0]));

    for( i = 0; i < 256; i++ )
        subs_tab[i] = 0;
    for( i = 256; i <= 512; i++ )
        subs_tab[i] = i - 256;

    // draw a pixel-wide border of dummy "watershed" (i.e. boundary) pixels
    for( j = 0; j < size.width; j++ )
        mask[j] = mask[j + mstep*(size.height-1)] = WSHED;

    // initial phase: put all the neighbor pixels of each marker to the ordered queue -
    // determine the initial boundaries of the basins
    for( i = 1; i < size.height-1; i++ )
    {
        img += istep; mask += mstep;
        mask[0] = mask[size.width-1] = WSHED; // boundary pixels

        for( j = 1; j < size.width-1; j++ )
        {
            int* m = mask + j;
            if( m[0] < 0 ) m[0] = 0;
            if( m[0] == 0 && (m[-1] > 0 || m[1] > 0 || m[-mstep] > 0 || m[mstep] > 0) )
            {
                // Find smallest difference to adjacent markers
                const uchar* ptr = img + j*3;
                int idx = 256, t;
                if( m[-1] > 0 )
                    c_diff( ptr, ptr - 3, idx );
                if( m[1] > 0 )
                {
                    c_diff( ptr, ptr + 3, t );
                    idx = ws_min( idx, t );
                }
                if( m[-mstep] > 0 )
                {
                    c_diff( ptr, ptr - istep, t );
                    idx = ws_min( idx, t );
                }
                if( m[mstep] > 0 )
                {
                    c_diff( ptr, ptr + istep, t );
                    idx = ws_min( idx, t );
                }

                // Add to according queue
                assert( 0 <= idx && idx <= 255 );
                ws_push( idx, i*mstep + j, i*istep + j*3 );
                m[0] = IN_QUEUE;
            }
        }
    }

    // find the first non-empty queue
    for( i = 0; i < NQ; i++ )
        if( q[i].first )
            break;

    // if there is no markers, exit immediately
    if( i == NQ )
        return;

    active_queue = i;
    img = src.ptr();
    mask = dst.ptr<int>();

    // recursively fill the basins
    for(;;)
    {
        int mofs, iofs;
        int lab = 0, t;
        int* m;
        const uchar* ptr;

        // Get non-empty queue with highest priority
        // Exit condition: empty priority queue
        if( q[active_queue].first == 0 )
        {
            for( i = active_queue+1; i < NQ; i++ )
                if( q[i].first )
                    break;
            if( i == NQ )
                break;
            active_queue = i;
        }

        // Get next node
        ws_pop( active_queue, mofs, iofs );

        // Calculate pointer to current pixel in input and marker image
        m = mask + mofs;
        ptr = img + iofs;

        // Check surrounding pixels for labels
        // to determine label for current pixel
        t = m[-1]; // Left
        if( t > 0 ) lab = t;
        t = m[1]; // Right
        if( t > 0 )
        {
            if( lab == 0 ) lab = t;
            else if( t != lab ) lab = WSHED;
        }
        t = m[-mstep]; // Top
        if( t > 0 )
        {
            if( lab == 0 ) lab = t;
            else if( t != lab ) lab = WSHED;
        }
        t = m[mstep]; // Bottom
        if( t > 0 )
        {
            if( lab == 0 ) lab = t;
            else if( t != lab ) lab = WSHED;
        }

        // Set label to current pixel in marker image
        assert( lab != 0 );
        m[0] = lab;

        if( lab == WSHED )
            continue;

        // Add adjacent, unlabeled pixels to corresponding queue
        if( m[-1] == 0 )
        {
            c_diff( ptr, ptr - 3, t );
            ws_push( t, mofs - 1, iofs - 3 );
            active_queue = ws_min( active_queue, t );
            m[-1] = IN_QUEUE;
        }
        if( m[1] == 0 )
        {
            c_diff( ptr, ptr + 3, t );
            ws_push( t, mofs + 1, iofs + 3 );
            active_queue = ws_min( active_queue, t );
            m[1] = IN_QUEUE;
        }
        if( m[-mstep] == 0 )
        {
            c_diff( ptr, ptr - istep, t );
            ws_push( t, mofs - mstep, iofs - istep );
            active_queue = ws_min( active_queue, t );
            m[-mstep] = IN_QUEUE;
        }
        if( m[mstep] == 0 )
        {
            c_diff( ptr, ptr + istep, t );
            ws_push( t, mofs + mstep, iofs + istep );
            active_queue = ws_min( active_queue, t );
            m[mstep] = IN_QUEUE;
        }
    }
}


/****************************************************************************************\
*                                         Meanshift                                      *
\****************************************************************************************/


void cv::pyrMeanShiftFiltering( InputArray _src, OutputArray _dst,
                                double sp0, double sr, int max_level,
                                TermCriteria termcrit )
{
    Mat src0 = _src.getMat();

    if( src0.empty() )
        return;

    _dst.create( src0.size(), src0.type() );
    Mat dst0 = _dst.getMat();

    const int cn = 3;
    const int MAX_LEVELS = 8;

    if( (unsigned)max_level > (unsigned)MAX_LEVELS )
        CV_Error( CV_StsOutOfRange, "The number of pyramid levels is too large or negative" );

    std::vector<cv::Mat> src_pyramid(max_level+1);
    std::vector<cv::Mat> dst_pyramid(max_level+1);
    cv::Mat mask0;
    int i, j, level;
    //uchar* submask = 0;

    #define cdiff(ofs0) (tab[c0-dptr[ofs0]+255] + \
        tab[c1-dptr[(ofs0)+1]+255] + tab[c2-dptr[(ofs0)+2]+255] >= isr22)

    double sr2 = sr * sr;
    int isr2 = cvRound(sr2), isr22 = MAX(isr2,16);
    int tab[768];


    if( src0.type() != CV_8UC3 )
        CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 3-channel images are supported" );

    if( src0.type() != dst0.type() )
        CV_Error( CV_StsUnmatchedFormats, "The input and output images must have the same type" );

    if( src0.size() != dst0.size() )
        CV_Error( CV_StsUnmatchedSizes, "The input and output images must have the same size" );

    if( !(termcrit.type & CV_TERMCRIT_ITER) )
        termcrit.maxCount = 5;
    termcrit.maxCount = MAX(termcrit.maxCount,1);
    termcrit.maxCount = MIN(termcrit.maxCount,100);
    if( !(termcrit.type & CV_TERMCRIT_EPS) )
        termcrit.epsilon = 1.f;
    termcrit.epsilon = MAX(termcrit.epsilon, 0.f);

    for( i = 0; i < 768; i++ )
        tab[i] = (i - 255)*(i - 255);

    // 1. construct pyramid
    src_pyramid[0] = src0;
    dst_pyramid[0] = dst0;
    for( level = 1; level <= max_level; level++ )
    {
        src_pyramid[level].create( (src_pyramid[level-1].rows+1)/2,
                        (src_pyramid[level-1].cols+1)/2, src_pyramid[level-1].type() );
        dst_pyramid[level].create( src_pyramid[level].rows,
                        src_pyramid[level].cols, src_pyramid[level].type() );
        cv::pyrDown( src_pyramid[level-1], src_pyramid[level], src_pyramid[level].size() );
        //CV_CALL( cvResize( src_pyramid[level-1], src_pyramid[level], CV_INTER_AREA ));
    }

    mask0.create(src0.rows, src0.cols, CV_8UC1);
    //CV_CALL( submask = (uchar*)cvAlloc( (sp+2)*(sp+2) ));

    // 2. apply meanshift, starting from the pyramid top (i.e. the smallest layer)
    for( level = max_level; level >= 0; level-- )
    {
        cv::Mat src = src_pyramid[level];
        cv::Size size = src.size();
        const uchar* sptr = src.ptr();
        int sstep = (int)src.step;
        uchar* mask = 0;
        int mstep = 0;
        uchar* dptr;
        int dstep;
        float sp = (float)(sp0 / (1 << level));
        sp = MAX( sp, 1 );

        if( level < max_level )
        {
            cv::Size size1 = dst_pyramid[level+1].size();
            cv::Mat m( size.height, size.width, CV_8UC1, mask0.ptr() );
            dstep = (int)dst_pyramid[level+1].step;
            dptr = dst_pyramid[level+1].ptr() + dstep + cn;
            mstep = (int)m.step;
            mask = m.ptr() + mstep;
            //cvResize( dst_pyramid[level+1], dst_pyramid[level], CV_INTER_CUBIC );
            cv::pyrUp( dst_pyramid[level+1], dst_pyramid[level], dst_pyramid[level].size() );
            m.setTo(cv::Scalar::all(0));

            for( i = 1; i < size1.height-1; i++, dptr += dstep - (size1.width-2)*3, mask += mstep*2 )
            {
                for( j = 1; j < size1.width-1; j++, dptr += cn )
                {
                    int c0 = dptr[0], c1 = dptr[1], c2 = dptr[2];
                    mask[j*2 - 1] = cdiff(-3) || cdiff(3) || cdiff(-dstep-3) || cdiff(-dstep) ||
                        cdiff(-dstep+3) || cdiff(dstep-3) || cdiff(dstep) || cdiff(dstep+3);
                }
            }

            cv::dilate( m, m, cv::Mat() );
            mask = m.ptr();
        }

        dptr = dst_pyramid[level].ptr();
        dstep = (int)dst_pyramid[level].step;

        for( i = 0; i < size.height; i++, sptr += sstep - size.width*3,
                                          dptr += dstep - size.width*3,
                                          mask += mstep )
        {
            for( j = 0; j < size.width; j++, sptr += 3, dptr += 3 )
            {
                int x0 = j, y0 = i, x1, y1, iter;
                int c0, c1, c2;

                if( mask && !mask[j] )
                    continue;

                c0 = sptr[0], c1 = sptr[1], c2 = sptr[2];

                // iterate meanshift procedure
                for( iter = 0; iter < termcrit.maxCount; iter++ )
                {
                    const uchar* ptr;
                    int x, y, count = 0;
                    int minx, miny, maxx, maxy;
                    int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0;
                    double icount;
                    int stop_flag;

                    //mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp)
                    minx = cvRound(x0 - sp); minx = MAX(minx, 0);
                    miny = cvRound(y0 - sp); miny = MAX(miny, 0);
                    maxx = cvRound(x0 + sp); maxx = MIN(maxx, size.width-1);
                    maxy = cvRound(y0 + sp); maxy = MIN(maxy, size.height-1);
                    ptr = sptr + (miny - i)*sstep + (minx - j)*3;

                    for( y = miny; y <= maxy; y++, ptr += sstep - (maxx-minx+1)*3 )
                    {
                        int row_count = 0;
                        x = minx;
                        #if CV_ENABLE_UNROLLED
                        for( ; x + 3 <= maxx; x += 4, ptr += 12 )
                        {
                            int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
                            if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
                            {
                                s0 += t0; s1 += t1; s2 += t2;
                                sx += x; row_count++;
                            }
                            t0 = ptr[3], t1 = ptr[4], t2 = ptr[5];
                            if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
                            {
                                s0 += t0; s1 += t1; s2 += t2;
                                sx += x+1; row_count++;
                            }
                            t0 = ptr[6], t1 = ptr[7], t2 = ptr[8];
                            if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
                            {
                                s0 += t0; s1 += t1; s2 += t2;
                                sx += x+2; row_count++;
                            }
                            t0 = ptr[9], t1 = ptr[10], t2 = ptr[11];
                            if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
                            {
                                s0 += t0; s1 += t1; s2 += t2;
                                sx += x+3; row_count++;
                            }
                        }
                        #endif
                        for( ; x <= maxx; x++, ptr += 3 )
                        {
                            int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
                            if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
                            {
                                s0 += t0; s1 += t1; s2 += t2;
                                sx += x; row_count++;
                            }
                        }
                        count += row_count;
                        sy += y*row_count;
                    }

                    if( count == 0 )
                        break;

                    icount = 1./count;
                    x1 = cvRound(sx*icount);
                    y1 = cvRound(sy*icount);
                    s0 = cvRound(s0*icount);
                    s1 = cvRound(s1*icount);
                    s2 = cvRound(s2*icount);

                    stop_flag = (x0 == x1 && y0 == y1) || std::abs(x1-x0) + std::abs(y1-y0) +
                        tab[s0 - c0 + 255] + tab[s1 - c1 + 255] +
                        tab[s2 - c2 + 255] <= termcrit.epsilon;

                    x0 = x1; y0 = y1;
                    c0 = s0; c1 = s1; c2 = s2;

                    if( stop_flag )
                        break;
                }

                dptr[0] = (uchar)c0;
                dptr[1] = (uchar)c1;
                dptr[2] = (uchar)c2;
            }
        }
    }
}


///////////////////////////////////////////////////////////////////////////////////////////////

CV_IMPL void cvWatershed( const CvArr* _src, CvArr* _markers )
{
    cv::Mat src = cv::cvarrToMat(_src), markers = cv::cvarrToMat(_markers);
    cv::watershed(src, markers);
}


CV_IMPL void
cvPyrMeanShiftFiltering( const CvArr* srcarr, CvArr* dstarr,
                        double sp0, double sr, int max_level,
                        CvTermCriteria termcrit )
{
    cv::Mat src = cv::cvarrToMat(srcarr);
    const cv::Mat dst = cv::cvarrToMat(dstarr);

    cv::pyrMeanShiftFiltering(src, dst, sp0, sr, max_level, termcrit);
}