cascadeclassifier.cpp 36.5 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include <vector>
#include <iostream>

using namespace cv;
using namespace cv::gpu;
using namespace std;

#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)

cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU()               { throw_nogpu(); }
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string&)  { throw_nogpu(); }
cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU()              { throw_nogpu(); }
bool cv::gpu::CascadeClassifier_GPU::empty() const                    { throw_nogpu(); return true; }
bool cv::gpu::CascadeClassifier_GPU::load(const string&)              { throw_nogpu(); return true; }
Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const        { throw_nogpu(); return Size();}
void cv::gpu::CascadeClassifier_GPU::release()                        { throw_nogpu(); }
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat&, GpuMat&, double, int, Size)       {throw_nogpu(); return -1;}
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat&, GpuMat&, Size, Size, double, int) {throw_nogpu(); return -1;}

#else

struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
{
public:
    CascadeClassifierImpl(){}
    virtual ~CascadeClassifierImpl(){}

    virtual unsigned int process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors,
                      bool findLargestObject, bool visualizeInPlace, cv::Size ncvMinSize, cv::Size maxObjectSize) = 0;

    virtual cv::Size getClassifierCvSize() const = 0;
    virtual bool read(const string& classifierAsXml) = 0;
};

struct cv::gpu::CascadeClassifier_GPU::HaarCascade : cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
{
public:
    HaarCascade() : lastAllocatedFrameSize(-1, -1)
    {
        ncvSetDebugOutputHandler(NCVDebugOutputHandler);
    }

    bool read(const string& filename)
    {
        ncvSafeCall( load(filename) );
        return true;
    }

    NCVStatus process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors,
                      bool findLargestObject, bool visualizeInPlace, cv::Size ncvMinSize,
                      /*out*/unsigned int& numDetections)
    {
        calculateMemReqsAndAllocate(src.size());

        NCVMemPtr src_beg;
        src_beg.ptr = (void*)src.ptr<Ncv8u>();
        src_beg.memtype = NCVMemoryTypeDevice;

        NCVMemSegment src_seg;
        src_seg.begin = src_beg;
        src_seg.size  = src.step * src.rows;

        NCVMatrixReuse<Ncv8u> d_src(src_seg, static_cast<int>(devProp.textureAlignment), src.cols, src.rows, static_cast<int>(src.step), true);
        ncvAssertReturn(d_src.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);

        CV_Assert(objects.rows == 1);

        NCVMemPtr objects_beg;
        objects_beg.ptr = (void*)objects.ptr<NcvRect32u>();
        objects_beg.memtype = NCVMemoryTypeDevice;

        NCVMemSegment objects_seg;
        objects_seg.begin = objects_beg;
        objects_seg.size = objects.step * objects.rows;
        NCVVectorReuse<NcvRect32u> d_rects(objects_seg, objects.cols);
        ncvAssertReturn(d_rects.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);

        NcvSize32u roi;
        roi.width = d_src.width();
        roi.height = d_src.height();

        NcvSize32u winMinSize(ncvMinSize.width, ncvMinSize.height);

        Ncv32u flags = 0;
        flags |= findLargestObject? NCVPipeObjDet_FindLargestObject : 0;
        flags |= visualizeInPlace ? NCVPipeObjDet_VisualizeInPlace  : 0;

        ncvStat = ncvDetectObjectsMultiScale_device(
            d_src, roi, d_rects, numDetections, haar, *h_haarStages,
            *d_haarStages, *d_haarNodes, *d_haarFeatures,
            winMinSize,
            minNeighbors,
            scaleStep, 1,
            flags,
            *gpuAllocator, *cpuAllocator, devProp, 0);
        ncvAssertReturnNcvStat(ncvStat);
        ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);

        return NCV_SUCCESS;
    }

    unsigned int process(const GpuMat& image, GpuMat& objectsBuf, float scaleFactor, int minNeighbors,
                      bool findLargestObject, bool visualizeInPlace, cv::Size minSize, cv::Size /*maxObjectSize*/)
    {
        CV_Assert( scaleFactor > 1 && image.depth() == CV_8U);

        const int defaultObjSearchNum = 100;
        if (objectsBuf.empty())
        {
            objectsBuf.create(1, defaultObjSearchNum, DataType<Rect>::type);
        }

        cv::Size ncvMinSize = this->getClassifierCvSize();

        if (ncvMinSize.width < minSize.width && ncvMinSize.height < minSize.height)
        {
            ncvMinSize.width = minSize.width;
            ncvMinSize.height = minSize.height;
        }

        unsigned int numDetections;
        ncvSafeCall(this->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, ncvMinSize, numDetections));

        return numDetections;
    }

    cv::Size getClassifierCvSize() const { return cv::Size(haar.ClassifierSize.width, haar.ClassifierSize.height); }

private:
    static void NCVDebugOutputHandler(const std::string &msg) { CV_Error(CV_GpuApiCallError, msg.c_str()); }

    NCVStatus load(const string& classifierFile)
    {
        int devId = cv::gpu::getDevice();
        ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), NCV_CUDA_ERROR);

        // Load the classifier from file (assuming its size is about 1 mb) using a simple allocator
        gpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeDevice, static_cast<int>(devProp.textureAlignment));
        cpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeHostPinned, static_cast<int>(devProp.textureAlignment));

        ncvAssertPrintReturn(gpuCascadeAllocator->isInitialized(), "Error creating cascade GPU allocator", NCV_CUDA_ERROR);
        ncvAssertPrintReturn(cpuCascadeAllocator->isInitialized(), "Error creating cascade CPU allocator", NCV_CUDA_ERROR);

        Ncv32u haarNumStages, haarNumNodes, haarNumFeatures;
        ncvStat = ncvHaarGetClassifierSize(classifierFile, haarNumStages, haarNumNodes, haarNumFeatures);
        ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", NCV_FILE_ERROR);

        h_haarStages   = new NCVVectorAlloc<HaarStage64>(*cpuCascadeAllocator, haarNumStages);
        h_haarNodes    = new NCVVectorAlloc<HaarClassifierNode128>(*cpuCascadeAllocator, haarNumNodes);
        h_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*cpuCascadeAllocator, haarNumFeatures);

        ncvAssertPrintReturn(h_haarStages->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
        ncvAssertPrintReturn(h_haarNodes->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
        ncvAssertPrintReturn(h_haarFeatures->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);

        ncvStat = ncvHaarLoadFromFile_host(classifierFile, haar, *h_haarStages, *h_haarNodes, *h_haarFeatures);
        ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error loading classifier", NCV_FILE_ERROR);

        d_haarStages   = new NCVVectorAlloc<HaarStage64>(*gpuCascadeAllocator, haarNumStages);
        d_haarNodes    = new NCVVectorAlloc<HaarClassifierNode128>(*gpuCascadeAllocator, haarNumNodes);
        d_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*gpuCascadeAllocator, haarNumFeatures);

        ncvAssertPrintReturn(d_haarStages->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
        ncvAssertPrintReturn(d_haarNodes->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
        ncvAssertPrintReturn(d_haarFeatures->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);

        ncvStat = h_haarStages->copySolid(*d_haarStages, 0);
        ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
        ncvStat = h_haarNodes->copySolid(*d_haarNodes, 0);
        ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
        ncvStat = h_haarFeatures->copySolid(*d_haarFeatures, 0);
        ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);

        return NCV_SUCCESS;
    }

    NCVStatus calculateMemReqsAndAllocate(const Size& frameSize)
    {
        if (lastAllocatedFrameSize == frameSize)
        {
            return NCV_SUCCESS;
        }

        // Calculate memory requirements and create real allocators
        NCVMemStackAllocator gpuCounter(static_cast<int>(devProp.textureAlignment));
        NCVMemStackAllocator cpuCounter(static_cast<int>(devProp.textureAlignment));

        ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", NCV_CUDA_ERROR);
        ncvAssertPrintReturn(cpuCounter.isInitialized(), "Error creating CPU memory counter", NCV_CUDA_ERROR);

        NCVMatrixAlloc<Ncv8u> d_src(gpuCounter, frameSize.width, frameSize.height);
        NCVMatrixAlloc<Ncv8u> h_src(cpuCounter, frameSize.width, frameSize.height);

        ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
        ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);

        NCVVectorAlloc<NcvRect32u> d_rects(gpuCounter, 100);
        ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);

        NcvSize32u roi;
        roi.width = d_src.width();
        roi.height = d_src.height();
        Ncv32u numDetections;
        ncvStat = ncvDetectObjectsMultiScale_device(d_src, roi, d_rects, numDetections, haar, *h_haarStages,
            *d_haarStages, *d_haarNodes, *d_haarFeatures, haar.ClassifierSize, 4, 1.2f, 1, 0, gpuCounter, cpuCounter, devProp, 0);

        ncvAssertReturnNcvStat(ncvStat);
        ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);

        gpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), static_cast<int>(devProp.textureAlignment));
        cpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), static_cast<int>(devProp.textureAlignment));

        ncvAssertPrintReturn(gpuAllocator->isInitialized(), "Error creating GPU memory allocator", NCV_CUDA_ERROR);
        ncvAssertPrintReturn(cpuAllocator->isInitialized(), "Error creating CPU memory allocator", NCV_CUDA_ERROR);

        lastAllocatedFrameSize = frameSize;
        return NCV_SUCCESS;
    }

    cudaDeviceProp devProp;
    NCVStatus ncvStat;

    Ptr<NCVMemNativeAllocator> gpuCascadeAllocator;
    Ptr<NCVMemNativeAllocator> cpuCascadeAllocator;

    Ptr<NCVVectorAlloc<HaarStage64> >           h_haarStages;
    Ptr<NCVVectorAlloc<HaarClassifierNode128> > h_haarNodes;
    Ptr<NCVVectorAlloc<HaarFeature64> >         h_haarFeatures;

    HaarClassifierCascadeDescriptor haar;

    Ptr<NCVVectorAlloc<HaarStage64> >           d_haarStages;
    Ptr<NCVVectorAlloc<HaarClassifierNode128> > d_haarNodes;
    Ptr<NCVVectorAlloc<HaarFeature64> >         d_haarFeatures;

    Size lastAllocatedFrameSize;

    Ptr<NCVMemStackAllocator> gpuAllocator;
    Ptr<NCVMemStackAllocator> cpuAllocator;

    virtual ~HaarCascade(){}
};

cv::Size operator -(const cv::Size& a, const cv::Size& b)
{
    return cv::Size(a.width - b.width, a.height - b.height);
}

cv::Size operator +(const cv::Size& a, const int& i)
{
    return cv::Size(a.width + i, a.height + i);
}

cv::Size operator *(const cv::Size& a, const float& f)
{
    return cv::Size(cvRound(a.width * f), cvRound(a.height * f));
}

cv::Size operator /(const cv::Size& a, const float& f)
{
    return cv::Size(cvRound(a.width / f), cvRound(a.height / f));
}

bool operator <=(const cv::Size& a, const cv::Size& b)
{
    return a.width <= b.width && a.height <= b.width;
}

struct PyrLavel
{
    PyrLavel(int _order, float _scale, cv::Size frame, cv::Size window, cv::Size minObjectSize)
    {
        do
        {
            order = _order;
            scale = pow(_scale, order);
            sFrame = frame / scale;
            workArea = sFrame - window + 1;
            sWindow = window * scale;
            _order++;
        } while (sWindow <= minObjectSize);
    }

    bool isFeasible(cv::Size maxObj)
    {
        return workArea.width > 0 && workArea.height > 0 && sWindow <= maxObj;
    }

    PyrLavel next(float factor, cv::Size frame, cv::Size window, cv::Size minObjectSize)
    {
        return PyrLavel(order + 1, factor, frame, window, minObjectSize);
    }

    int order;
    float scale;
    cv::Size sFrame;
    cv::Size workArea;
    cv::Size sWindow;
};

namespace cv { namespace gpu { namespace device
{
    namespace lbp
    {
        void classifyPyramid(int frameW,
                             int frameH,
                             int windowW,
                             int windowH,
                             float initalScale,
                             float factor,
                             int total,
                             const PtrStepSzb& mstages,
                             const int nstages,
                             const PtrStepSzi& mnodes,
                             const PtrStepSzf& mleaves,
                             const PtrStepSzi& msubsets,
                             const PtrStepSzb& mfeatures,
                             const int subsetSize,
                             PtrStepSz<int4> objects,
                             unsigned int* classified,
                             PtrStepSzi integral);

        void connectedConmonents(PtrStepSz<int4>  candidates, int ncandidates, PtrStepSz<int4> objects,int groupThreshold, float grouping_eps, unsigned int* nclasses);
    }
}}}

struct cv::gpu::CascadeClassifier_GPU::LbpCascade : cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
{
public:
    struct Stage
    {
        int    first;
        int    ntrees;
        float  threshold;
    };

    LbpCascade(){}
    virtual ~LbpCascade(){}

    virtual unsigned int process(const GpuMat& image, GpuMat& objects, float scaleFactor, int groupThreshold, bool /*findLargestObject*/,
        bool /*visualizeInPlace*/, cv::Size minObjectSize, cv::Size maxObjectSize)
    {
        CV_Assert(scaleFactor > 1 && image.depth() == CV_8U);

        // const int defaultObjSearchNum = 100;
        const float grouping_eps = 0.2f;

        if( !objects.empty() && objects.depth() == CV_32S)
            objects.reshape(4, 1);
        else
            objects.create(1 , image.cols >> 4, CV_32SC4);

        // used for debug
        // candidates.setTo(cv::Scalar::all(0));
        // objects.setTo(cv::Scalar::all(0));

        if (maxObjectSize == cv::Size())
            maxObjectSize = image.size();

        allocateBuffers(image.size());

        unsigned int classified = 0;
        GpuMat dclassified(1, 1, CV_32S);
        cudaSafeCall( cudaMemcpy(dclassified.ptr(), &classified, sizeof(int), cudaMemcpyHostToDevice) );

        PyrLavel level(0, scaleFactor, image.size(), NxM, minObjectSize);

        while (level.isFeasible(maxObjectSize))
        {
            int acc = level.sFrame.width + 1;
            float iniScale = level.scale;

            cv::Size area = level.workArea;
            int step = 1 + (level.scale <= 2.f);

            int total = 0, prev  = 0;

            while (acc <= integralFactor * (image.cols + 1) && level.isFeasible(maxObjectSize))
            {
                // create sutable matrix headers
                GpuMat src  = resuzeBuffer(cv::Rect(0, 0, level.sFrame.width, level.sFrame.height));
                GpuMat sint = integral(cv::Rect(prev, 0, level.sFrame.width + 1, level.sFrame.height + 1));
                GpuMat buff = integralBuffer;

                // generate integral for scale
                gpu::resize(image, src, level.sFrame, 0, 0, CV_INTER_LINEAR);
                gpu::integralBuffered(src, sint, buff);

                // calculate job
                int totalWidth = level.workArea.width / step;
                total += totalWidth * (level.workArea.height / step);

                // go to next pyramide level
                level = level.next(scaleFactor, image.size(), NxM, minObjectSize);
                area = level.workArea;

                step = (1 + (level.scale <= 2.f));
                prev = acc;
                acc += level.sFrame.width + 1;
            }

            device::lbp::classifyPyramid(image.cols, image.rows, NxM.width - 1, NxM.height - 1, iniScale, scaleFactor, total, stage_mat, stage_mat.cols / sizeof(Stage), nodes_mat,
                leaves_mat, subsets_mat, features_mat, subsetSize, candidates, dclassified.ptr<unsigned int>(), integral);
        }

        if (groupThreshold <= 0  || objects.empty())
            return 0;

        cudaSafeCall( cudaMemcpy(&classified, dclassified.ptr(), sizeof(int), cudaMemcpyDeviceToHost) );
        device::lbp::connectedConmonents(candidates, classified, objects, groupThreshold, grouping_eps, dclassified.ptr<unsigned int>());

        cudaSafeCall( cudaMemcpy(&classified, dclassified.ptr(), sizeof(int), cudaMemcpyDeviceToHost) );
        cudaSafeCall( cudaDeviceSynchronize() );
        return classified;
    }

    virtual cv::Size getClassifierCvSize() const { return NxM; }

    bool read(const string& classifierAsXml)
    {
        FileStorage fs(classifierAsXml, FileStorage::READ);
        return fs.isOpened() ? read(fs.getFirstTopLevelNode()) : false;
    }

private:

    void allocateBuffers(cv::Size frame)
    {
        if (frame == cv::Size())
            return;

        if (resuzeBuffer.empty() || frame.width > resuzeBuffer.cols || frame.height > resuzeBuffer.rows)
        {
            resuzeBuffer.create(frame, CV_8UC1);

            integral.create(frame.height + 1, integralFactor * (frame.width + 1), CV_32SC1);
            NcvSize32u roiSize;
            roiSize.width = frame.width;
            roiSize.height = frame.height;

            cudaDeviceProp prop;
            cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) );

            Ncv32u bufSize;
            ncvSafeCall( nppiStIntegralGetSize_8u32u(roiSize, &bufSize, prop) );
            integralBuffer.create(1, bufSize, CV_8UC1);

            candidates.create(1 , frame.width >> 1, CV_32SC4);
        }
    }

    bool read(const FileNode &root)
    {
        const char *GPU_CC_STAGE_TYPE       = "stageType";
        const char *GPU_CC_FEATURE_TYPE     = "featureType";
        const char *GPU_CC_BOOST            = "BOOST";
        const char *GPU_CC_LBP              = "LBP";
        const char *GPU_CC_MAX_CAT_COUNT    = "maxCatCount";
        const char *GPU_CC_HEIGHT           = "height";
        const char *GPU_CC_WIDTH            = "width";
        const char *GPU_CC_STAGE_PARAMS     = "stageParams";
        const char *GPU_CC_MAX_DEPTH        = "maxDepth";
        const char *GPU_CC_FEATURE_PARAMS   = "featureParams";
        const char *GPU_CC_STAGES           = "stages";
        const char *GPU_CC_STAGE_THRESHOLD  = "stageThreshold";
        const float GPU_THRESHOLD_EPS       = 1e-5f;
        const char *GPU_CC_WEAK_CLASSIFIERS = "weakClassifiers";
        const char *GPU_CC_INTERNAL_NODES   = "internalNodes";
        const char *GPU_CC_LEAF_VALUES      = "leafValues";
        const char *GPU_CC_FEATURES         = "features";
        const char *GPU_CC_RECT             = "rect";

        std::string stageTypeStr = (string)root[GPU_CC_STAGE_TYPE];
        CV_Assert(stageTypeStr == GPU_CC_BOOST);

        string featureTypeStr = (string)root[GPU_CC_FEATURE_TYPE];
        CV_Assert(featureTypeStr == GPU_CC_LBP);

        NxM.width =  (int)root[GPU_CC_WIDTH];
        NxM.height = (int)root[GPU_CC_HEIGHT];
        CV_Assert( NxM.height > 0 && NxM.width > 0 );

        isStumps = ((int)(root[GPU_CC_STAGE_PARAMS][GPU_CC_MAX_DEPTH]) == 1) ? true : false;
        CV_Assert(isStumps);

        FileNode fn = root[GPU_CC_FEATURE_PARAMS];
        if (fn.empty())
            return false;

        ncategories = fn[GPU_CC_MAX_CAT_COUNT];

        subsetSize = (ncategories + 31) / 32;
        nodeStep = 3 + ( ncategories > 0 ? subsetSize : 1 );

        fn = root[GPU_CC_STAGES];
        if (fn.empty())
            return false;

        std::vector<Stage> stages;
        stages.reserve(fn.size());

        std::vector<int> cl_trees;
        std::vector<int> cl_nodes;
        std::vector<float> cl_leaves;
        std::vector<int> subsets;

        FileNodeIterator it = fn.begin(), it_end = fn.end();
        for (size_t si = 0; it != it_end; si++, ++it )
        {
            FileNode fns = *it;
            Stage st;
            st.threshold = (float)fns[GPU_CC_STAGE_THRESHOLD] - GPU_THRESHOLD_EPS;

            fns = fns[GPU_CC_WEAK_CLASSIFIERS];
            if (fns.empty())
                return false;

            st.ntrees = (int)fns.size();
            st.first = (int)cl_trees.size();

            stages.push_back(st);// (int, int, float)

            cl_trees.reserve(stages[si].first + stages[si].ntrees);

            // weak trees
            FileNodeIterator it1 = fns.begin(), it1_end = fns.end();
            for ( ; it1 != it1_end; ++it1 )
            {
                FileNode fnw = *it1;

                FileNode internalNodes = fnw[GPU_CC_INTERNAL_NODES];
                FileNode leafValues = fnw[GPU_CC_LEAF_VALUES];
                if ( internalNodes.empty() || leafValues.empty() )
                    return false;

                int nodeCount = (int)internalNodes.size()/nodeStep;
                cl_trees.push_back(nodeCount);

                cl_nodes.reserve((cl_nodes.size() + nodeCount) * 3);
                cl_leaves.reserve(cl_leaves.size() + leafValues.size());

                if( subsetSize > 0 )
                    subsets.reserve(subsets.size() + nodeCount * subsetSize);

                // nodes
                FileNodeIterator iIt = internalNodes.begin(), iEnd = internalNodes.end();

                for( ; iIt != iEnd; )
                {
                    cl_nodes.push_back((int)*(iIt++));
                    cl_nodes.push_back((int)*(iIt++));
                    cl_nodes.push_back((int)*(iIt++));

                    if( subsetSize > 0 )
                        for( int j = 0; j < subsetSize; j++, ++iIt )
                            subsets.push_back((int)*iIt);
                }

                // leaves
                iIt = leafValues.begin(), iEnd = leafValues.end();
                for( ; iIt != iEnd; ++iIt )
                    cl_leaves.push_back((float)*iIt);
            }
        }

        fn = root[GPU_CC_FEATURES];
        if( fn.empty() )
            return false;
        std::vector<uchar> features;
        features.reserve(fn.size() * 4);
        FileNodeIterator f_it = fn.begin(), f_end = fn.end();
        for (; f_it != f_end; ++f_it)
        {
            FileNode rect = (*f_it)[GPU_CC_RECT];
            FileNodeIterator r_it = rect.begin();
            features.push_back(saturate_cast<uchar>((int)*(r_it++)));
            features.push_back(saturate_cast<uchar>((int)*(r_it++)));
            features.push_back(saturate_cast<uchar>((int)*(r_it++)));
            features.push_back(saturate_cast<uchar>((int)*(r_it++)));
        }

        // copy data structures on gpu
        stage_mat.upload(cv::Mat(1, (int) (stages.size() * sizeof(Stage)), CV_8UC1, (uchar*)&(stages[0]) ));
        trees_mat.upload(cv::Mat(cl_trees).reshape(1,1));
        nodes_mat.upload(cv::Mat(cl_nodes).reshape(1,1));
        leaves_mat.upload(cv::Mat(cl_leaves).reshape(1,1));
        subsets_mat.upload(cv::Mat(subsets).reshape(1,1));
        features_mat.upload(cv::Mat(features).reshape(4,1));

        return true;
    }

    enum stage { BOOST = 0 };
    enum feature { LBP = 1, HAAR = 2 };
    static const stage stageType = BOOST;
    static const feature featureType = LBP;

    cv::Size NxM;
    bool isStumps;
    int ncategories;
    int subsetSize;
    int nodeStep;

    // gpu representation of classifier
    GpuMat stage_mat;
    GpuMat trees_mat;
    GpuMat nodes_mat;
    GpuMat leaves_mat;
    GpuMat subsets_mat;
    GpuMat features_mat;

    GpuMat integral;
    GpuMat integralBuffer;
    GpuMat resuzeBuffer;

    GpuMat candidates;
    static const int integralFactor = 4;
};

cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU()
: findLargestObject(false), visualizeInPlace(false), impl(0) {}

cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string& filename)
: findLargestObject(false), visualizeInPlace(false), impl(0) { load(filename); }

cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU() { release(); }

void cv::gpu::CascadeClassifier_GPU::release() { if (impl) { delete impl; impl = 0; } }

bool cv::gpu::CascadeClassifier_GPU::empty() const { return impl == 0; }

Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const
{
    return this->empty() ? Size() : impl->getClassifierCvSize();
}

int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, double scaleFactor, int minNeighbors, Size minSize)
{
    CV_Assert( !this->empty());
    return impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, minSize, cv::Size());
}

int cv::gpu::CascadeClassifier_GPU::detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize, double scaleFactor, int minNeighbors)
{
    CV_Assert( !this->empty());
    return impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, minSize, maxObjectSize);
}

bool cv::gpu::CascadeClassifier_GPU::load(const string& filename)
{
    release();

    std::string fext = filename.substr(filename.find_last_of(".") + 1);
    std::transform(fext.begin(), fext.end(), fext.begin(), ::tolower);

    if (fext == "nvbin")
    {
        impl = new HaarCascade();
        return impl->read(filename);
    }

    FileStorage fs(filename, FileStorage::READ);

    if (!fs.isOpened())
    {
        impl = new HaarCascade();
        return impl->read(filename);
    }

    const char *GPU_CC_LBP = "LBP";
    string featureTypeStr = (string)fs.getFirstTopLevelNode()["featureType"];
    if (featureTypeStr == GPU_CC_LBP)
        impl = new LbpCascade();
    else
        impl = new HaarCascade();

    impl->read(filename);
    return !this->empty();
}

#endif

//////////////////////////////////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CUDA)

struct RectConvert
{
    Rect operator()(const NcvRect32u& nr) const { return Rect(nr.x, nr.y, nr.width, nr.height); }
    NcvRect32u operator()(const Rect& nr) const
    {
        NcvRect32u rect;
        rect.x = nr.x;
        rect.y = nr.y;
        rect.width = nr.width;
        rect.height = nr.height;
        return rect;
    }
};

void groupRectangles(std::vector<NcvRect32u> &hypotheses, int groupThreshold, double eps, std::vector<Ncv32u> *weights)
{
    vector<Rect> rects(hypotheses.size());
    std::transform(hypotheses.begin(), hypotheses.end(), rects.begin(), RectConvert());

    if (weights)
    {
        vector<int> weights_int;
        weights_int.assign(weights->begin(), weights->end());
        cv::groupRectangles(rects, weights_int, groupThreshold, eps);
    }
    else
    {
        cv::groupRectangles(rects, groupThreshold, eps);
    }
    std::transform(rects.begin(), rects.end(), hypotheses.begin(), RectConvert());
    hypotheses.resize(rects.size());
}

NCVStatus loadFromXML(const std::string &filename,
                      HaarClassifierCascadeDescriptor &haar,
                      std::vector<HaarStage64> &haarStages,
                      std::vector<HaarClassifierNode128> &haarClassifierNodes,
                      std::vector<HaarFeature64> &haarFeatures)
{
    NCVStatus ncvStat;

    haar.NumStages = 0;
    haar.NumClassifierRootNodes = 0;
    haar.NumClassifierTotalNodes = 0;
    haar.NumFeatures = 0;
    haar.ClassifierSize.width = 0;
    haar.ClassifierSize.height = 0;
    haar.bHasStumpsOnly = true;
    haar.bNeedsTiltedII = false;
    Ncv32u curMaxTreeDepth;

    std::vector<HaarClassifierNode128> h_TmpClassifierNotRootNodes;
    haarStages.resize(0);
    haarClassifierNodes.resize(0);
    haarFeatures.resize(0);

    Ptr<CvHaarClassifierCascade> oldCascade = (CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0);
    if (oldCascade.empty())
    {
        return NCV_HAAR_XML_LOADING_EXCEPTION;
    }

    haar.ClassifierSize.width = oldCascade->orig_window_size.width;
    haar.ClassifierSize.height = oldCascade->orig_window_size.height;

    int stagesCound = oldCascade->count;
    for(int s = 0; s < stagesCound; ++s) // by stages
    {
        HaarStage64 curStage;
        curStage.setStartClassifierRootNodeOffset(static_cast<Ncv32u>(haarClassifierNodes.size()));

        curStage.setStageThreshold(oldCascade->stage_classifier[s].threshold);

        int treesCount = oldCascade->stage_classifier[s].count;
        for(int t = 0; t < treesCount; ++t) // by trees
        {
            Ncv32u nodeId = 0;
            CvHaarClassifier* tree = &oldCascade->stage_classifier[s].classifier[t];

            int nodesCount = tree->count;
            for(int n = 0; n < nodesCount; ++n)  //by features
            {
                CvHaarFeature* feature = &tree->haar_feature[n];

                HaarClassifierNode128 curNode;
                curNode.setThreshold(tree->threshold[n]);

                NcvBool bIsLeftNodeLeaf = false;
                NcvBool bIsRightNodeLeaf = false;

                HaarClassifierNodeDescriptor32 nodeLeft;
                if ( tree->left[n] <= 0 )
                {
                    Ncv32f leftVal = tree->alpha[-tree->left[n]];
                    ncvStat = nodeLeft.create(leftVal);
                    ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
                    bIsLeftNodeLeaf = true;
                }
                else
                {
                    Ncv32u leftNodeOffset = tree->left[n];
                    nodeLeft.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + leftNodeOffset - 1));
                    haar.bHasStumpsOnly = false;
                }
                curNode.setLeftNodeDesc(nodeLeft);

                HaarClassifierNodeDescriptor32 nodeRight;
                if ( tree->right[n] <= 0 )
                {
                    Ncv32f rightVal = tree->alpha[-tree->right[n]];
                    ncvStat = nodeRight.create(rightVal);
                    ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
                    bIsRightNodeLeaf = true;
                }
                else
                {
                    Ncv32u rightNodeOffset = tree->right[n];
                    nodeRight.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + rightNodeOffset - 1));
                    haar.bHasStumpsOnly = false;
                }
                curNode.setRightNodeDesc(nodeRight);

                Ncv32u tiltedVal = feature->tilted;
                haar.bNeedsTiltedII = (tiltedVal != 0);

                Ncv32u featureId = 0;
                for(int l = 0; l < CV_HAAR_FEATURE_MAX; ++l) //by rects
                {
                    Ncv32u rectX = feature->rect[l].r.x;
                    Ncv32u rectY = feature->rect[l].r.y;
                    Ncv32u rectWidth = feature->rect[l].r.width;
                    Ncv32u rectHeight = feature->rect[l].r.height;

                    Ncv32f rectWeight = feature->rect[l].weight;

                    if (rectWeight == 0/* && rectX == 0 &&rectY == 0 && rectWidth == 0 && rectHeight == 0*/)
                        break;

                    HaarFeature64 curFeature;
                    ncvStat = curFeature.setRect(rectX, rectY, rectWidth, rectHeight, haar.ClassifierSize.width, haar.ClassifierSize.height);
                    curFeature.setWeight(rectWeight);
                    ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
                    haarFeatures.push_back(curFeature);

                    featureId++;
                }

                HaarFeatureDescriptor32 tmpFeatureDesc;
                ncvStat = tmpFeatureDesc.create(haar.bNeedsTiltedII, bIsLeftNodeLeaf, bIsRightNodeLeaf,
                    featureId, static_cast<Ncv32u>(haarFeatures.size()) - featureId);
                ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
                curNode.setFeatureDesc(tmpFeatureDesc);

                if (!nodeId)
                {
                    //root node
                    haarClassifierNodes.push_back(curNode);
                    curMaxTreeDepth = 1;
                }
                else
                {
                    //other node
                    h_TmpClassifierNotRootNodes.push_back(curNode);
                    curMaxTreeDepth++;
                }

                nodeId++;
            }
        }

        curStage.setNumClassifierRootNodes(treesCount);
        haarStages.push_back(curStage);
    }

    //fill in cascade stats
    haar.NumStages = static_cast<Ncv32u>(haarStages.size());
    haar.NumClassifierRootNodes = static_cast<Ncv32u>(haarClassifierNodes.size());
    haar.NumClassifierTotalNodes = static_cast<Ncv32u>(haar.NumClassifierRootNodes + h_TmpClassifierNotRootNodes.size());
    haar.NumFeatures = static_cast<Ncv32u>(haarFeatures.size());

    //merge root and leaf nodes in one classifiers array
    Ncv32u offsetRoot = static_cast<Ncv32u>(haarClassifierNodes.size());
    for (Ncv32u i=0; i<haarClassifierNodes.size(); i++)
    {
        HaarFeatureDescriptor32 featureDesc = haarClassifierNodes[i].getFeatureDesc();

        HaarClassifierNodeDescriptor32 nodeLeft = haarClassifierNodes[i].getLeftNodeDesc();
        if (!featureDesc.isLeftNodeLeaf())
        {
            Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
            nodeLeft.create(newOffset);
        }
        haarClassifierNodes[i].setLeftNodeDesc(nodeLeft);

        HaarClassifierNodeDescriptor32 nodeRight = haarClassifierNodes[i].getRightNodeDesc();
        if (!featureDesc.isRightNodeLeaf())
        {
            Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
            nodeRight.create(newOffset);
        }
        haarClassifierNodes[i].setRightNodeDesc(nodeRight);
    }

    for (Ncv32u i=0; i<h_TmpClassifierNotRootNodes.size(); i++)
    {
        HaarFeatureDescriptor32 featureDesc = h_TmpClassifierNotRootNodes[i].getFeatureDesc();

        HaarClassifierNodeDescriptor32 nodeLeft = h_TmpClassifierNotRootNodes[i].getLeftNodeDesc();
        if (!featureDesc.isLeftNodeLeaf())
        {
            Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
            nodeLeft.create(newOffset);
        }
        h_TmpClassifierNotRootNodes[i].setLeftNodeDesc(nodeLeft);

        HaarClassifierNodeDescriptor32 nodeRight = h_TmpClassifierNotRootNodes[i].getRightNodeDesc();
        if (!featureDesc.isRightNodeLeaf())
        {
            Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
            nodeRight.create(newOffset);
        }
        h_TmpClassifierNotRootNodes[i].setRightNodeDesc(nodeRight);

        haarClassifierNodes.push_back(h_TmpClassifierNotRootNodes[i]);
    }

    return NCV_SUCCESS;
}

#endif /* HAVE_CUDA */