lbp.cu 12.1 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#if !defined CUDA_DISABLER

#include "lbp.hpp"
wester committed
46 47
#include "opencv2/gpu/device/vec_traits.hpp"
#include "opencv2/gpu/device/saturate_cast.hpp"
wester committed
48

wester committed
49
namespace cv { namespace gpu { namespace device
wester committed
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
{
    namespace lbp
    {
        struct LBP
        {
            __host__ __device__ __forceinline__ LBP() {}

            __device__ __forceinline__ int operator() (const int* integral, int ty, int fh, int fw, int& shift) const
            {
                int anchors[9];

                anchors[0]  = integral[ty];
                anchors[1]  = integral[ty + fw];
                anchors[0] -= anchors[1];
                anchors[2]  = integral[ty + fw * 2];
                anchors[1] -= anchors[2];
                anchors[2] -= integral[ty + fw * 3];

                ty += fh;
                anchors[3]  = integral[ty];
                anchors[4]  = integral[ty + fw];
                anchors[3] -= anchors[4];
                anchors[5]  = integral[ty + fw * 2];
                anchors[4] -= anchors[5];
                anchors[5] -= integral[ty + fw * 3];

                anchors[0] -= anchors[3];
                anchors[1] -= anchors[4];
                anchors[2] -= anchors[5];
                // 0 - 2 contains s0 - s2

                ty += fh;
                anchors[6]  = integral[ty];
                anchors[7]  = integral[ty + fw];
                anchors[6] -= anchors[7];
                anchors[8]  = integral[ty + fw * 2];
                anchors[7] -= anchors[8];
                anchors[8] -= integral[ty + fw * 3];

                anchors[3] -= anchors[6];
                anchors[4] -= anchors[7];
                anchors[5] -= anchors[8];
                // 3 - 5 contains s3 - s5

                anchors[0] -= anchors[4];
                anchors[1] -= anchors[4];
                anchors[2] -= anchors[4];
                anchors[3] -= anchors[4];
                anchors[5] -= anchors[4];

                int response = (~(anchors[0] >> 31)) & 4;
                response |= (~(anchors[1] >> 31)) & 2;;
                response |= (~(anchors[2] >> 31)) & 1;

                shift = (~(anchors[5] >> 31)) & 16;
                shift |= (~(anchors[3] >> 31)) & 1;

                ty += fh;
                anchors[0]  = integral[ty];
                anchors[1]  = integral[ty + fw];
                anchors[0] -= anchors[1];
                anchors[2]  = integral[ty + fw * 2];
                anchors[1] -= anchors[2];
                anchors[2] -= integral[ty + fw * 3];

                anchors[6] -= anchors[0];
                anchors[7] -= anchors[1];
                anchors[8] -= anchors[2];
                // 0 -2 contains s6 - s8

                anchors[6] -= anchors[4];
                anchors[7] -= anchors[4];
                anchors[8] -= anchors[4];

                shift |= (~(anchors[6] >> 31)) & 2;
                shift |= (~(anchors[7] >> 31)) & 4;
                shift |= (~(anchors[8] >> 31)) & 8;
                return response;
            }
        };

        template<typename Pr>
        __global__ void disjoin(int4* candidates, int4* objects, unsigned int n, int groupThreshold, float grouping_eps, unsigned int* nclasses)
        {
            unsigned int tid = threadIdx.x;
            extern __shared__ int sbuff[];

            int* labels = sbuff;
            int* rrects = sbuff + n;

            Pr predicate(grouping_eps);
            partition(candidates, n, labels, predicate);

            rrects[tid * 4 + 0] = 0;
            rrects[tid * 4 + 1] = 0;
            rrects[tid * 4 + 2] = 0;
            rrects[tid * 4 + 3] = 0;
            __syncthreads();

            int cls = labels[tid];
            Emulation::smem::atomicAdd((rrects + cls * 4 + 0), candidates[tid].x);
            Emulation::smem::atomicAdd((rrects + cls * 4 + 1), candidates[tid].y);
            Emulation::smem::atomicAdd((rrects + cls * 4 + 2), candidates[tid].z);
            Emulation::smem::atomicAdd((rrects + cls * 4 + 3), candidates[tid].w);

            __syncthreads();
            labels[tid] = 0;

            __syncthreads();
            Emulation::smem::atomicInc((unsigned int*)labels + cls, n);

            __syncthreads();
            *nclasses = 0;

            int active = labels[tid];
            if (active)
            {
                int* r1 = rrects + tid * 4;
                float s = 1.f / active;
                r1[0] = saturate_cast<int>(r1[0] * s);
                r1[1] = saturate_cast<int>(r1[1] * s);
                r1[2] = saturate_cast<int>(r1[2] * s);
                r1[3] = saturate_cast<int>(r1[3] * s);
            }
            __syncthreads();

            if (active && active >= groupThreshold)
            {
                int* r1 = rrects + tid * 4;
                int4 r_out = make_int4(r1[0], r1[1], r1[2], r1[3]);

                int aidx = Emulation::smem::atomicInc(nclasses, n);
                objects[aidx] = r_out;
            }
        }

        void connectedConmonents(PtrStepSz<int4> candidates, int ncandidates, PtrStepSz<int4> objects, int groupThreshold, float grouping_eps, unsigned int* nclasses)
        {
            if (!ncandidates) return;
            int block = ncandidates;
            int smem  = block * ( sizeof(int) + sizeof(int4) );
            disjoin<InSameComponint><<<1, block, smem>>>(candidates, objects, ncandidates, groupThreshold, grouping_eps, nclasses);
            cudaSafeCall( cudaGetLastError() );
        }

        struct Cascade
        {
            __host__ __device__ __forceinline__ Cascade(const Stage* _stages, int _nstages, const ClNode* _nodes, const float* _leaves,
                const int* _subsets, const uchar4* _features, int _subsetSize)

            : stages(_stages), nstages(_nstages), nodes(_nodes), leaves(_leaves), subsets(_subsets), features(_features), subsetSize(_subsetSize){}

            __device__ __forceinline__ bool operator() (int y, int x, int* integral, const int pitch) const
            {
                int current_node = 0;
                int current_leave = 0;

                for (int s = 0; s < nstages; ++s)
                {
                    float sum = 0;
                    Stage stage = stages[s];
                    for (int t = 0; t < stage.ntrees; t++)
                    {
                        ClNode node = nodes[current_node];
                        uchar4 feature = features[node.featureIdx];

                        int shift;
                        int c = evaluator(integral, (y + feature.y) * pitch + x + feature.x, feature.w * pitch, feature.z, shift);
                        int idx =  (subsets[ current_node * subsetSize + c] & ( 1 << shift)) ? current_leave : current_leave + 1;
                        sum += leaves[idx];

                        current_node += 1;
                        current_leave += 2;
                    }

                    if (sum < stage.threshold)
                        return false;
                }

                return true;
            }

            const Stage*  stages;
            const int nstages;

            const ClNode* nodes;
            const float* leaves;
            const int* subsets;
            const uchar4* features;

            const int subsetSize;
            const LBP evaluator;
        };

        // stepShift, scale, width_k, sum_prev => y =  sum_prev + tid_k / width_k, x = tid_k - tid_k / width_k
        __global__ void lbp_cascade(const Cascade cascade, int frameW, int frameH, int windowW, int windowH, float scale, const float factor,
            const int total, int* integral, const int pitch, PtrStepSz<int4> objects, unsigned int* classified)
        {
            int ftid = blockIdx.x * blockDim.x + threadIdx.x;
            if (ftid >= total) return;

            int step = (scale <= 2.f);

            int windowsForLine = (__float2int_rn( __fdividef(frameW, scale)) - windowW) >> step;
            int stotal = windowsForLine * ( (__float2int_rn( __fdividef(frameH, scale)) - windowH) >> step);
            int wshift = 0;

            int scaleTid = ftid;

            while (scaleTid >= stotal)
            {
                scaleTid -= stotal;
                wshift += __float2int_rn(__fdividef(frameW, scale)) + 1;
                scale *= factor;
                step = (scale <= 2.f);
                windowsForLine = ( ((__float2int_rn(__fdividef(frameW, scale)) - windowW) >> step));
                stotal = windowsForLine * ( (__float2int_rn(__fdividef(frameH, scale)) - windowH) >> step);
            }

            int y = __fdividef(scaleTid, windowsForLine);
            int x = scaleTid - y * windowsForLine;

            x <<= step;
            y <<= step;

            if (cascade(y, x + wshift, integral, pitch))
            {
                if(x >= __float2int_rn(__fdividef(frameW, scale)) - windowW) return;

                int4 rect;
                rect.x = __float2int_rn(x * scale);
                rect.y = __float2int_rn(y * scale);
                rect.z = __float2int_rn(windowW * scale);
                rect.w = __float2int_rn(windowH * scale);

                int res = atomicInc(classified, (unsigned int)objects.cols);
                objects(0, res) = rect;
            }
        }

        void classifyPyramid(int frameW, int frameH, int windowW, int windowH, float initialScale, float factor, int workAmount,
            const PtrStepSzb& mstages, const int nstages, const PtrStepSzi& mnodes, const PtrStepSzf& mleaves, const PtrStepSzi& msubsets, const PtrStepSzb& mfeatures,
            const int subsetSize, PtrStepSz<int4> objects, unsigned int* classified, PtrStepSzi integral)
        {
            const int block = 128;
            int grid = divUp(workAmount, block);
            cudaFuncSetCacheConfig(lbp_cascade, cudaFuncCachePreferL1);
            Cascade cascade((Stage*)mstages.ptr(), nstages, (ClNode*)mnodes.ptr(), mleaves.ptr(), msubsets.ptr(), (uchar4*)mfeatures.ptr(), subsetSize);
            lbp_cascade<<<grid, block>>>(cascade, frameW, frameH, windowW, windowH, initialScale, factor, workAmount, integral.ptr(), (int)integral.step / sizeof(int), objects, classified);
        }
    }
}}}

#endif /* CUDA_DISABLER */