stereovar.cpp 13.6 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

/*
 This is a modification of the variational stereo correspondence algorithm, described in:
 S. Kosov, T. Thormaehlen, H.-P. Seidel "Accurate Real-Time Disparity Estimation with Variational Methods"
 Proceedings of the 5th International Symposium on Visual Computing, Vegas, USA

 This code is written by Sergey G. Kosov for "Visir PX" application as part of Project X (www.project-10.de)
 */

#include "precomp.hpp"
#include <limits.h>

namespace cv
{
StereoVar::StereoVar() : levels(3), pyrScale(0.5), nIt(5), minDisp(0), maxDisp(16), poly_n(3), poly_sigma(0), fi(25.0f), lambda(0.03f), penalization(PENALIZATION_TICHONOV), cycle(CYCLE_V), flags(USE_SMART_ID | USE_AUTO_PARAMS)
{
}

StereoVar::StereoVar(int _levels, double _pyrScale, int _nIt, int _minDisp, int _maxDisp, int _poly_n, double _poly_sigma, float _fi, float _lambda, int _penalization, int _cycle, int _flags) : levels(_levels), pyrScale(_pyrScale), nIt(_nIt), minDisp(_minDisp), maxDisp(_maxDisp), poly_n(_poly_n), poly_sigma(_poly_sigma), fi(_fi), lambda(_lambda), penalization(_penalization), cycle(_cycle), flags(_flags)
{ // No Parameters check, since they are all public
}

StereoVar::~StereoVar()
{
}

static Mat diffX(Mat &src)
{
    int cols = src.cols - 1;
    Mat dst(src.size(), src.type());
    for(int y = 0; y < src.rows; y++){
        const float* pSrc = src.ptr<float>(y);
        float* pDst = dst.ptr<float>(y);
        int x = 0;
#if CV_SSE2
        for (x = 0; x <= cols - 8; x += 8) {
            __m128 a0 = _mm_loadu_ps(pSrc + x);
            __m128 b0 = _mm_loadu_ps(pSrc + x + 1);
            __m128 a1 = _mm_loadu_ps(pSrc + x + 4);
            __m128 b1 = _mm_loadu_ps(pSrc + x + 5);
            b0 = _mm_sub_ps(b0, a0);
            b1 = _mm_sub_ps(b1, a1);
            _mm_storeu_ps(pDst + x, b0);
            _mm_storeu_ps(pDst + x + 4, b1);
        }
#endif
        for( ; x < cols; x++) pDst[x] = pSrc[x+1] - pSrc[x];
        pDst[cols] = 0.f;
    }
    return dst;
}

static Mat getGradient(Mat &src)
{
    int x, y;
    Mat dst(src.size(), src.type());
    dst.setTo(0);
    for (y = 0; y < src.rows - 1; y++) {
        float *pSrc = src.ptr<float>(y);
        float *pSrcF = src.ptr<float>(y + 1);
        float *pDst = dst.ptr<float>(y);
        for (x = 0; x < src.cols - 1; x++)
            pDst[x] = fabs(pSrc[x + 1] - pSrc[x]) + fabs(pSrcF[x] - pSrc[x]);
    }
    return dst;
}

static Mat getG_c(Mat &src, float l)
{
    Mat dst(src.size(), src.type());
    for (int y = 0; y < src.rows; y++) {
        float *pSrc = src.ptr<float>(y);
        float *pDst = dst.ptr<float>(y);
        for (int x = 0; x < src.cols; x++)
            pDst[x] = 0.5f*l / sqrtf(l*l + pSrc[x]*pSrc[x]);
    }
    return dst;
}

static Mat getG_p(Mat &src, float l)
{
    Mat dst(src.size(), src.type());
    for (int y = 0; y < src.rows; y++) {
        float *pSrc = src.ptr<float>(y);
        float *pDst = dst.ptr<float>(y);
        for (int x = 0; x < src.cols; x++)
            pDst[x] = 0.5f*l*l / (l*l + pSrc[x]*pSrc[x]);
    }
    return dst;
}

void StereoVar::VariationalSolver(Mat &I1, Mat &I2, Mat &I2x, Mat &u, int level)
{
    int n, x, y;
    float gl = 1, gr = 1, gu = 1, gd = 1, gc = 4;
    Mat g_c, g_p;
    Mat U;
    u.copyTo(U);

    int     N = nIt;
    float   l = lambda;
    float   Fi = fi;


    if (flags & USE_SMART_ID) {
        double scale = pow(pyrScale, (double) level) * (1 + pyrScale);
        N = (int) (N / scale);
    }

    double scale = pow(pyrScale, (double) level);
    Fi /= (float) scale;
    l *= (float) scale;

    int width   = u.cols - 1;
    int height  = u.rows - 1;
    for (n = 0; n < N; n++) {
        if (penalization != PENALIZATION_TICHONOV) {
            Mat gradient = getGradient(U);
            switch (penalization) {
                case PENALIZATION_CHARBONNIER:  g_c = getG_c(gradient, l); break;
                case PENALIZATION_PERONA_MALIK: g_p = getG_p(gradient, l); break;
            }
            gradient.release();
        }
        for (y = 1 ; y < height; y++) {
            float *pU   = U.ptr<float>(y);
            float *pUu  = U.ptr<float>(y + 1);
            float *pUd  = U.ptr<float>(y - 1);
            float *pu   = u.ptr<float>(y);
            float *pI1  = I1.ptr<float>(y);
            float *pI2  = I2.ptr<float>(y);
            float *pI2x = I2x.ptr<float>(y);
            float *pG_c = NULL, *pG_cu = NULL, *pG_cd = NULL;
            float *pG_p = NULL, *pG_pu = NULL, *pG_pd = NULL;
            switch (penalization) {
                case PENALIZATION_CHARBONNIER:
                    pG_c    = g_c.ptr<float>(y);
                    pG_cu   = g_c.ptr<float>(y + 1);
                    pG_cd   = g_c.ptr<float>(y - 1);
                    break;
                case PENALIZATION_PERONA_MALIK:
                    pG_p    = g_p.ptr<float>(y);
                    pG_pu   = g_p.ptr<float>(y + 1);
                    pG_pd   = g_p.ptr<float>(y - 1);
                    break;
            }
            for (x = 1; x < width; x++) {
                switch (penalization) {
                    case PENALIZATION_CHARBONNIER:
                        gc = pG_c[x];
                        gl = gc + pG_c[x - 1];
                        gr = gc + pG_c[x + 1];
                        gu = gc + pG_cu[x];
                        gd = gc + pG_cd[x];
                        gc = gl + gr + gu + gd;
                        break;
                    case PENALIZATION_PERONA_MALIK:
                        gc = pG_p[x];
                        gl = gc + pG_p[x - 1];
                        gr = gc + pG_p[x + 1];
                        gu = gc + pG_pu[x];
                        gd = gc + pG_pd[x];
                        gc = gl + gr + gu + gd;
                        break;
                }

                float _fi = Fi;
                if (maxDisp > minDisp) {
                    if (pU[x] > maxDisp * scale) {_fi *= 1000; pU[x] = static_cast<float>(maxDisp * scale);}
                    if (pU[x] < minDisp * scale) {_fi *= 1000; pU[x] = static_cast<float>(minDisp * scale);}
                }

                int A = static_cast<int>(pU[x]);
                int neg = 0; if (pU[x] <= 0) neg = -1;

                if (x + A > width)
                    pu[x] = pU[width - A];
                else if (x + A + neg < 0)
                    pu[x] = pU[- A + 2];
                else {
                    pu[x] = A + (pI2x[x + A + neg] * (pI1[x] - pI2[x + A])
                              + _fi * (gr * pU[x + 1] + gl * pU[x - 1] + gu * pUu[x] + gd * pUd[x] - gc * A))
                              / (pI2x[x + A + neg] * pI2x[x + A + neg] + gc * _fi) ;
                }
            }// x
            pu[0] = pu[1];
            pu[width] = pu[width - 1];
        }// y
        for (x = 0; x <= width; x++) {
            u.at<float>(0, x) = u.at<float>(1, x);
            u.at<float>(height, x) = u.at<float>(height - 1, x);
        }
        u.copyTo(U);
        if (!g_c.empty()) g_c.release();
        if (!g_p.empty()) g_p.release();
    }//n
}

void StereoVar::VCycle_MyFAS(Mat &I1, Mat &I2, Mat &I2x, Mat &_u, int level)
{
    CvSize imgSize = _u.size();
    CvSize frmSize = cvSize((int) (imgSize.width * pyrScale + 0.5), (int) (imgSize.height * pyrScale + 0.5));
    Mat I1_h, I2_h, I2x_h, u_h, U, U_h;

    //PRE relaxation
    VariationalSolver(I1, I2, I2x, _u, level);

    if (level >= levels - 1) return;
    level ++;

    //scaling DOWN
    resize(I1, I1_h, frmSize, 0, 0, INTER_AREA);
    resize(I2, I2_h, frmSize, 0, 0, INTER_AREA);
    resize(_u, u_h, frmSize, 0, 0, INTER_AREA);
    u_h.convertTo(u_h, u_h.type(), pyrScale);
    I2x_h = diffX(I2_h);

    //Next level
    U_h = u_h.clone();
    VCycle_MyFAS(I1_h, I2_h, I2x_h, U_h, level);

    subtract(U_h, u_h, U_h);
    U_h.convertTo(U_h, U_h.type(), 1.0 / pyrScale);

    //scaling UP
    resize(U_h, U, imgSize);

    //correcting the solution
    add(_u, U, _u);

    //POST relaxation
    VariationalSolver(I1, I2, I2x, _u, level - 1);

    if (flags & USE_MEDIAN_FILTERING) medianBlur(_u, _u, 3);

    I1_h.release();
    I2_h.release();
    I2x_h.release();
    u_h.release();
    U.release();
    U_h.release();
}

void StereoVar::FMG(Mat &I1, Mat &I2, Mat &I2x, Mat &u, int level)
{
    double  scale = pow(pyrScale, (double) level);
    CvSize  frmSize = cvSize((int) (u.cols * scale + 0.5), (int) (u.rows * scale + 0.5));
    Mat I1_h, I2_h, I2x_h, u_h;

    //scaling DOWN
    resize(I1, I1_h, frmSize, 0, 0, INTER_AREA);
    resize(I2, I2_h, frmSize, 0, 0, INTER_AREA);
    resize(u, u_h, frmSize, 0, 0, INTER_AREA);
    u_h.convertTo(u_h, u_h.type(), scale);
    I2x_h = diffX(I2_h);

    switch (cycle) {
        case CYCLE_O:
            VariationalSolver(I1_h, I2_h, I2x_h, u_h, level);
            break;
        case CYCLE_V:
            VCycle_MyFAS(I1_h, I2_h, I2x_h, u_h, level);
            break;
    }

    u_h.convertTo(u_h, u_h.type(), 1.0 / scale);

    //scaling UP
    resize(u_h, u, u.size(), 0, 0, INTER_CUBIC);

    I1_h.release();
    I2_h.release();
    I2x_h.release();
    u_h.release();

    level--;
    if ((flags & USE_AUTO_PARAMS) && (level < levels / 3)) {
        penalization = PENALIZATION_PERONA_MALIK;
        fi *= 100;
        flags -= USE_AUTO_PARAMS;
        autoParams();
    }
    if (flags & USE_MEDIAN_FILTERING) medianBlur(u, u, 3);
    if (level >= 0) FMG(I1, I2, I2x, u, level);
}

void StereoVar::autoParams()
{
    int maxD = (int)MAX(labs(maxDisp), labs(minDisp));

    if (!maxD) pyrScale = 0.85;
    else if (maxD < 8) pyrScale = 0.5;
    else if (maxD < 64) pyrScale = 0.5 + static_cast<double>(maxD - 8) * 0.00625;
    else pyrScale = 0.85;

    if (maxD) {
        levels = 0;
        while ( pow(pyrScale, levels) * maxD > 1.5) levels ++;
        levels++;
    }

    switch(penalization) {
        case PENALIZATION_TICHONOV: cycle = CYCLE_V; break;
        case PENALIZATION_CHARBONNIER: cycle = CYCLE_O; break;
        case PENALIZATION_PERONA_MALIK: cycle = CYCLE_O; break;
    }
}

void StereoVar::operator ()( const Mat& left, const Mat& right, Mat& disp )
{
    CV_Assert(left.size() == right.size() && left.type() == right.type());
    CvSize imgSize = left.size();
    int MaxD = (int)MAX(labs(minDisp), labs(maxDisp));
    int SignD = 1; if (MIN(minDisp, maxDisp) < 0) SignD = -1;
    if (minDisp >= maxDisp) {MaxD = 256; SignD = 1;}

    Mat u;
    if ((flags & USE_INITIAL_DISPARITY) && (!disp.empty())) {
        CV_Assert(disp.size() == left.size() && disp.type() == CV_8UC1);
        disp.convertTo(u, CV_32FC1, static_cast<double>(SignD * MaxD) / 256);
    } else {
        u.create(imgSize, CV_32FC1);
        u.setTo(0);
    }

    // Preprocessing
    Mat leftgray, rightgray;
    if (left.type() != CV_8UC1) {
        cvtColor(left, leftgray, CV_BGR2GRAY);
        cvtColor(right, rightgray, CV_BGR2GRAY);
    } else {
        left.copyTo(leftgray);
        right.copyTo(rightgray);
    }
    if (flags & USE_EQUALIZE_HIST) {
        equalizeHist(leftgray, leftgray);
        equalizeHist(rightgray, rightgray);
    }
    if (poly_sigma > 0.0001) {
        GaussianBlur(leftgray, leftgray, cvSize(poly_n, poly_n), poly_sigma);
        GaussianBlur(rightgray, rightgray, cvSize(poly_n, poly_n), poly_sigma);
    }

    if (flags & USE_AUTO_PARAMS) {
        penalization = PENALIZATION_TICHONOV;
        autoParams();
    }

    Mat I1, I2;
    leftgray.convertTo(I1, CV_32FC1);
    rightgray.convertTo(I2, CV_32FC1);
    leftgray.release();
    rightgray.release();

    Mat I2x = diffX(I2);

    FMG(I1, I2, I2x, u, levels - 1);

    I1.release();
    I2.release();
    I2x.release();


    disp.create( left.size(), CV_8UC1 );
    u = abs(u);
    u.convertTo(disp, disp.type(), 256 / MaxD, 0);

    u.release();
}
} // namespace