data_structures.rst 13.3 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
Data Structures
===============

.. highlight:: cpp



gpu::PtrStepSz
---------------
.. ocv:class:: gpu::PtrStepSz

Lightweight class encapsulating pitched memory on a GPU and passed to nvcc-compiled code (CUDA kernels). Typically, it is used internally by OpenCV and by users who write device code. You can call its members from both host and device code. ::

    template <typename T> struct PtrStepSz
    {
        int cols;
        int rows;
        T* data;
        size_t step;

        PtrStepSz() : cols(0), rows(0), data(0), step(0){};
        PtrStepSz(int rows, int cols, T *data, size_t step);

        template <typename U>
        explicit PtrStepSz(const PtrStepSz<U>& d);

        typedef T elem_type;
        enum { elem_size = sizeof(elem_type) };

        __CV_GPU_HOST_DEVICE__ size_t elemSize() const;

        /* returns pointer to the beginning of the given image row */
        __CV_GPU_HOST_DEVICE__ T* ptr(int y = 0);
        __CV_GPU_HOST_DEVICE__ const T* ptr(int y = 0) const;
    };

    typedef PtrStepSz<unsigned char> PtrStepSzb;
    typedef PtrStepSz<float> PtrStepSzf;
    typedef PtrStepSz<int> PtrStepSzi;



gpu::PtrStep
--------------
.. ocv:class:: gpu::PtrStep

Structure similar to :ocv:class:`gpu::PtrStepSz` but containing only a pointer and row step. Width and height fields are excluded due to performance reasons. The structure is intended for internal use or for users who write device code. ::

    template<typename T> struct PtrStep
    {
            T* data;
            size_t step;

            PtrStep();
            PtrStep(const PtrStepSz<T>& mem);

            typedef T elem_type;
            enum { elem_size = sizeof(elem_type) };

            __CV_GPU_HOST_DEVICE__ size_t elemSize() const;
            __CV_GPU_HOST_DEVICE__ T* ptr(int y = 0);
            __CV_GPU_HOST_DEVICE__ const T* ptr(int y = 0) const;
    };

    typedef PtrStep<unsigned char> PtrStep;
    typedef PtrStep<float> PtrStepf;
    typedef PtrStep<int> PtrStepi;


gpu::GpuMat
-----------
.. ocv:class:: gpu::GpuMat

Base storage class for GPU memory with reference counting. Its interface matches the :ocv:class:`Mat` interface with the following limitations:

* no arbitrary dimensions support (only 2D)
* no functions that return references to their data (because references on GPU are not valid for CPU)
* no expression templates technique support

Beware that the latter limitation may lead to overloaded matrix operators that cause memory allocations. The ``GpuMat`` class is convertible to :ocv:class:`gpu::PtrStepSz` and :ocv:class:`gpu::PtrStep` so it can be passed directly to the kernel.

.. note:: In contrast with :ocv:class:`Mat`, in most cases ``GpuMat::isContinuous() == false`` . This means that rows are aligned to a size depending on the hardware. Single-row ``GpuMat`` is always a continuous matrix.

::

    class CV_EXPORTS GpuMat
    {
    public:
            //! default constructor
            GpuMat();

            GpuMat(int rows, int cols, int type);
            GpuMat(Size size, int type);

            .....

            //! builds GpuMat from Mat. Blocks uploading to device.
            explicit GpuMat (const Mat& m);

            //! returns lightweight PtrStepSz structure for passing
            //to nvcc-compiled code. Contains size, data ptr and step.
            template <class T> operator PtrStepSz<T>() const;
            template <class T> operator PtrStep<T>() const;

            //! blocks uploading data to GpuMat.
            void upload(const cv::Mat& m);
            void upload(const CudaMem& m, Stream& stream);

            //! downloads data from device to host memory. Blocking calls.
            void download(cv::Mat& m) const;

            //! download async
            void download(CudaMem& m, Stream& stream) const;
    };


.. note:: You are not recommended to leave static or global ``GpuMat`` variables allocated, that is, to rely on its destructor. The destruction order of such variables and CUDA context is undefined. GPU memory release function returns error if the CUDA context has been destroyed before.

.. seealso:: :ocv:class:`Mat`



gpu::createContinuous
-------------------------
Creates a continuous matrix in the GPU memory.

.. ocv:function:: void gpu::createContinuous(int rows, int cols, int type, GpuMat& m)

.. ocv:function:: GpuMat gpu::createContinuous(int rows, int cols, int type)

.. ocv:function:: void gpu::createContinuous(Size size, int type, GpuMat& m)

.. ocv:function:: GpuMat gpu::createContinuous(Size size, int type)

    :param rows: Row count.

    :param cols: Column count.

    :param type: Type of the matrix.

    :param m: Destination matrix. This parameter changes only if it has a proper type and area ( :math:`\texttt{rows} \times \texttt{cols}` ).

Matrix is called continuous if its elements are stored continuously, that is, without gaps at the end of each row.



gpu::ensureSizeIsEnough
---------------------------
Ensures that the size of a matrix is big enough and the matrix has a proper type.

.. ocv:function:: void gpu::ensureSizeIsEnough(int rows, int cols, int type, GpuMat& m)

.. ocv:function:: void gpu::ensureSizeIsEnough(Size size, int type, GpuMat& m)

    :param rows: Minimum desired number of rows.

    :param cols: Minimum desired number of columns.

    :param size: Rows and columns passed as a structure.

    :param type: Desired matrix type.

    :param m: Destination matrix.

The function does not reallocate memory if the matrix has proper attributes already.



gpu::registerPageLocked
-------------------------------
Page-locks the memory of matrix and maps it for the device(s).

.. ocv:function:: void gpu::registerPageLocked(Mat& m)

    :param m: Input matrix.



gpu::unregisterPageLocked
-------------------------------
Unmaps the memory of matrix and makes it pageable again.

.. ocv:function:: void gpu::unregisterPageLocked(Mat& m)

    :param m: Input matrix.



gpu::CudaMem
------------
.. ocv:class:: gpu::CudaMem

Class with reference counting wrapping special memory type allocation functions from CUDA. Its interface is also
:ocv:func:`Mat`-like but with additional memory type parameters.

* **ALLOC_PAGE_LOCKED** sets a page locked memory type used commonly for fast and asynchronous uploading/downloading data from/to GPU.
* **ALLOC_ZEROCOPY** specifies a zero copy memory allocation that enables mapping the host memory to GPU address space, if supported.
* **ALLOC_WRITE_COMBINED**  sets the write combined buffer that is not cached by CPU. Such buffers are used to supply GPU with data when GPU only reads it. The advantage is a better CPU cache utilization.

.. note:: Allocation size of such memory types is usually limited. For more details, see *CUDA 2.2 Pinned Memory APIs* document or *CUDA C Programming Guide*.

::

    class CV_EXPORTS CudaMem
    {
    public:
            enum  { ALLOC_PAGE_LOCKED = 1, ALLOC_ZEROCOPY = 2,
                     ALLOC_WRITE_COMBINED = 4 };

            CudaMem(Size size, int type, int alloc_type = ALLOC_PAGE_LOCKED);

            //! creates from cv::Mat with coping data
            explicit CudaMem(const Mat& m, int alloc_type = ALLOC_PAGE_LOCKED);

             ......

            void create(Size size, int type, int alloc_type = ALLOC_PAGE_LOCKED);

            //! returns matrix header with disabled ref. counting for CudaMem data.
            Mat createMatHeader() const;
            operator Mat() const;

            //! maps host memory into device address space
            GpuMat createGpuMatHeader() const;
            operator GpuMat() const;

            //if host memory can be mapped to gpu address space;
            static bool canMapHostMemory();

            int alloc_type;
    };



gpu::CudaMem::createMatHeader
---------------------------------
Creates a header without reference counting to :ocv:class:`gpu::CudaMem` data.

.. ocv:function:: Mat gpu::CudaMem::createMatHeader() const



gpu::CudaMem::createGpuMatHeader
------------------------------------
Maps CPU memory to GPU address space and creates the :ocv:class:`gpu::GpuMat` header without reference counting for it.

.. ocv:function:: GpuMat gpu::CudaMem::createGpuMatHeader() const

This can be done only if memory was allocated with the ``ALLOC_ZEROCOPY`` flag and if it is supported by the hardware. Laptops often share video and CPU memory, so address spaces can be mapped, which eliminates an extra copy.



gpu::CudaMem::canMapHostMemory
----------------------------------
Returns ``true`` if the current hardware supports address space mapping and ``ALLOC_ZEROCOPY`` memory allocation.

.. ocv:function:: static bool gpu::CudaMem::canMapHostMemory()



gpu::Stream
-----------
.. ocv:class:: gpu::Stream

This class encapsulates a queue of asynchronous calls. Some functions have overloads with the additional ``gpu::Stream`` parameter. The overloads do initialization work (allocate output buffers, upload constants, and so on), start the GPU kernel, and return before results are ready. You can check whether all operations are complete via :ocv:func:`gpu::Stream::queryIfComplete`. You can asynchronously upload/download data from/to page-locked buffers, using the :ocv:class:`gpu::CudaMem` or :ocv:class:`Mat` header that points to a region of :ocv:class:`gpu::CudaMem`.

.. note:: Currently, you may face problems if an operation is enqueued twice with different data. Some functions use the constant GPU memory, and next call may update the memory before the previous one has been finished. But calling different operations asynchronously is safe because each operation has its own constant buffer. Memory copy/upload/download/set operations to the buffers you hold are also safe.

::

    class CV_EXPORTS Stream
    {
    public:
        Stream();
        ~Stream();

        Stream(const Stream&);
        Stream& operator=(const Stream&);

        bool queryIfComplete();
        void waitForCompletion();

        void enqueueDownload(const GpuMat& src, CudaMem& dst);
        void enqueueDownload(const GpuMat& src, Mat& dst);

        void enqueueUpload(const CudaMem& src, GpuMat& dst);
        void enqueueUpload(const Mat& src, GpuMat& dst);

        void enqueueCopy(const GpuMat& src, GpuMat& dst);

        void enqueueMemSet(const GpuMat& src, Scalar val);
        void enqueueMemSet(const GpuMat& src, Scalar val, const GpuMat& mask);

        void enqueueConvert(const GpuMat& src, GpuMat& dst, int type,
                            double a = 1, double b = 0);

        typedef void (*StreamCallback)(Stream& stream, int status, void* userData);
        void enqueueHostCallback(StreamCallback callback, void* userData);
    };



gpu::Stream::queryIfComplete
----------------------------
Returns ``true`` if the current stream queue is finished. Otherwise, it returns false.

.. ocv:function:: bool gpu::Stream::queryIfComplete()



gpu::Stream::waitForCompletion
------------------------------
Blocks the current CPU thread until all operations in the stream are complete.

.. ocv:function:: void gpu::Stream::waitForCompletion()



gpu::Stream::enqueueDownload
----------------------------
Copies data from device to host.

.. ocv:function:: void gpu::Stream::enqueueDownload(const GpuMat& src, CudaMem& dst)

.. ocv:function:: void gpu::Stream::enqueueDownload(const GpuMat& src, Mat& dst)

.. note:: ``cv::Mat`` must point to page locked memory (i.e. to ``CudaMem`` data or to its subMat) or must be registered with :ocv:func:`gpu::registerPageLocked` .



gpu::Stream::enqueueUpload
--------------------------
Copies data from host to device.

.. ocv:function:: void gpu::Stream::enqueueUpload(const CudaMem& src, GpuMat& dst)

.. ocv:function:: void gpu::Stream::enqueueUpload(const Mat& src, GpuMat& dst)

.. note:: ``cv::Mat`` must point to page locked memory (i.e. to ``CudaMem`` data or to its subMat) or must be registered with :ocv:func:`gpu::registerPageLocked` .



gpu::Stream::enqueueCopy
------------------------
Copies data from device to device.

.. ocv:function:: void gpu::Stream::enqueueCopy(const GpuMat& src, GpuMat& dst)



gpu::Stream::enqueueMemSet
--------------------------
Initializes or sets device memory to a value.

.. ocv:function:: void gpu::Stream::enqueueMemSet( GpuMat& src, Scalar val )

.. ocv:function:: void gpu::Stream::enqueueMemSet( GpuMat& src, Scalar val, const GpuMat& mask )



gpu::Stream::enqueueConvert
---------------------------
Converts matrix type, ex from float to uchar depending on type.

.. ocv:function:: void gpu::Stream::enqueueConvert( const GpuMat& src, GpuMat& dst, int dtype, double a=1, double b=0 )



gpu::Stream::enqueueHostCallback
--------------------------------
Adds a callback to be called on the host after all currently enqueued items in the stream have completed.

.. ocv:function:: void gpu::Stream::enqueueHostCallback(StreamCallback callback, void* userData)

.. note:: Callbacks must not make any CUDA API calls. Callbacks must not perform any synchronization that may depend on outstanding device work or other callbacks that are not mandated to run earlier.  Callbacks without a mandated order (in independent streams) execute in undefined order and may be serialized.



gpu::StreamAccessor
-------------------
.. ocv:struct:: gpu::StreamAccessor

Class that enables getting ``cudaStream_t`` from :ocv:class:`gpu::Stream` and is declared in ``stream_accessor.hpp`` because it is the only public header that depends on the CUDA Runtime API. Including it brings a dependency to your code. ::

    struct StreamAccessor
    {
        CV_EXPORTS static cudaStream_t getStream(const Stream& stream);
    };