stereobp.cu 22.5 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#if !defined CUDA_DISABLER

wester committed
45 46 47
#include "internal_shared.hpp"
#include "opencv2/gpu/device/saturate_cast.hpp"
#include "opencv2/gpu/device/limits.hpp"
wester committed
48

wester committed
49
namespace cv { namespace gpu { namespace device
wester committed
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
{
    namespace stereobp
    {
        ///////////////////////////////////////////////////////////////
        /////////////////////// load constants ////////////////////////
        ///////////////////////////////////////////////////////////////

        __constant__ int   cndisp;
        __constant__ float cmax_data_term;
        __constant__ float cdata_weight;
        __constant__ float cmax_disc_term;
        __constant__ float cdisc_single_jump;

        void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump)
        {
            cudaSafeCall( cudaMemcpyToSymbol(cndisp,            &ndisp,            sizeof(int  )) );
            cudaSafeCall( cudaMemcpyToSymbol(cmax_data_term,    &max_data_term,    sizeof(float)) );
            cudaSafeCall( cudaMemcpyToSymbol(cdata_weight,      &data_weight,      sizeof(float)) );
            cudaSafeCall( cudaMemcpyToSymbol(cmax_disc_term,    &max_disc_term,    sizeof(float)) );
            cudaSafeCall( cudaMemcpyToSymbol(cdisc_single_jump, &disc_single_jump, sizeof(float)) );
        }

        ///////////////////////////////////////////////////////////////
        ////////////////////////// comp data //////////////////////////
        ///////////////////////////////////////////////////////////////

        template <int cn> struct PixDiff;
        template <> struct PixDiff<1>
        {
            __device__ __forceinline__ PixDiff(const uchar* ls)
            {
                l = *ls;
            }
            __device__ __forceinline__ float operator()(const uchar* rs) const
            {
                return ::abs((int)l - *rs);
            }
            uchar l;
        };
        template <> struct PixDiff<3>
        {
            __device__ __forceinline__ PixDiff(const uchar* ls)
            {
                l = *((uchar3*)ls);
            }
            __device__ __forceinline__ float operator()(const uchar* rs) const
            {
                const float tr = 0.299f;
                const float tg = 0.587f;
                const float tb = 0.114f;

                float val  = tb * ::abs((int)l.x - rs[0]);
                      val += tg * ::abs((int)l.y - rs[1]);
                      val += tr * ::abs((int)l.z - rs[2]);

                return val;
            }
            uchar3 l;
        };
        template <> struct PixDiff<4>
        {
            __device__ __forceinline__ PixDiff(const uchar* ls)
            {
                l = *((uchar4*)ls);
            }
            __device__ __forceinline__ float operator()(const uchar* rs) const
            {
                const float tr = 0.299f;
                const float tg = 0.587f;
                const float tb = 0.114f;

                uchar4 r = *((uchar4*)rs);

                float val  = tb * ::abs((int)l.x - r.x);
                      val += tg * ::abs((int)l.y - r.y);
                      val += tr * ::abs((int)l.z - r.z);

                return val;
            }
            uchar4 l;
        };

        template <int cn, typename D>
        __global__ void comp_data(const PtrStepSzb left, const PtrStepb right, PtrStep<D> data)
        {
            const int x = blockIdx.x * blockDim.x + threadIdx.x;
            const int y = blockIdx.y * blockDim.y + threadIdx.y;

            if (y > 0 && y < left.rows - 1 && x > 0 && x < left.cols - 1)
            {
                const uchar* ls = left.ptr(y) + x * cn;
                const PixDiff<cn> pixDiff(ls);
                const uchar* rs = right.ptr(y) + x * cn;

                D* ds = data.ptr(y) + x;
                const size_t disp_step = data.step * left.rows / sizeof(D);

                for (int disp = 0; disp < cndisp; disp++)
                {
                    if (x - disp >= 1)
                    {
                        float val = pixDiff(rs - disp * cn);

                        ds[disp * disp_step] = saturate_cast<D>(fmin(cdata_weight * val, cdata_weight * cmax_data_term));
                    }
                    else
                    {
                        ds[disp * disp_step] = saturate_cast<D>(cdata_weight * cmax_data_term);
                    }
                }
            }
        }

        template<typename T, typename D>
        void comp_data_gpu(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream);

        template <> void comp_data_gpu<uchar, short>(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream)
        {
            dim3 threads(32, 8, 1);
            dim3 grid(1, 1, 1);

            grid.x = divUp(left.cols, threads.x);
            grid.y = divUp(left.rows, threads.y);

            comp_data<1, short><<<grid, threads, 0, stream>>>(left, right, (PtrStepSz<short>)data);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
        template <> void comp_data_gpu<uchar, float>(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream)
        {
            dim3 threads(32, 8, 1);
            dim3 grid(1, 1, 1);

            grid.x = divUp(left.cols, threads.x);
            grid.y = divUp(left.rows, threads.y);

            comp_data<1, float><<<grid, threads, 0, stream>>>(left, right, (PtrStepSz<float>)data);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }

        template <> void comp_data_gpu<uchar3, short>(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream)
        {
            dim3 threads(32, 8, 1);
            dim3 grid(1, 1, 1);

            grid.x = divUp(left.cols, threads.x);
            grid.y = divUp(left.rows, threads.y);

            comp_data<3, short><<<grid, threads, 0, stream>>>(left, right, (PtrStepSz<short>)data);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
        template <> void comp_data_gpu<uchar3, float>(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream)
        {
            dim3 threads(32, 8, 1);
            dim3 grid(1, 1, 1);

            grid.x = divUp(left.cols, threads.x);
            grid.y = divUp(left.rows, threads.y);

            comp_data<3, float><<<grid, threads, 0, stream>>>(left, right, (PtrStepSz<float>)data);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }

        template <> void comp_data_gpu<uchar4, short>(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream)
        {
            dim3 threads(32, 8, 1);
            dim3 grid(1, 1, 1);

            grid.x = divUp(left.cols, threads.x);
            grid.y = divUp(left.rows, threads.y);

            comp_data<4, short><<<grid, threads, 0, stream>>>(left, right, (PtrStepSz<short>)data);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
        template <> void comp_data_gpu<uchar4, float>(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream)
        {
            dim3 threads(32, 8, 1);
            dim3 grid(1, 1, 1);

            grid.x = divUp(left.cols, threads.x);
            grid.y = divUp(left.rows, threads.y);

            comp_data<4, float><<<grid, threads, 0, stream>>>(left, right, (PtrStepSz<float>)data);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }

        ///////////////////////////////////////////////////////////////
        //////////////////////// data step down ///////////////////////
        ///////////////////////////////////////////////////////////////

        template <typename T>
wester committed
258
        __global__ void data_step_down(int dst_cols, int dst_rows, int src_cols, int src_rows, const PtrStep<T> src, PtrStep<T> dst)
wester committed
259 260 261 262 263 264 265 266
        {
            const int x = blockIdx.x * blockDim.x + threadIdx.x;
            const int y = blockIdx.y * blockDim.y + threadIdx.y;

            if (x < dst_cols && y < dst_rows)
            {
                for (int d = 0; d < cndisp; ++d)
                {
wester committed
267 268 269 270
                    float dst_reg  = src.ptr(d * src_rows + ::min(2*y+0, src_rows-1))[::min(2*x+0, src_cols-1)];
                          dst_reg += src.ptr(d * src_rows + ::min(2*y+1, src_rows-1))[::min(2*x+0, src_cols-1)];
                          dst_reg += src.ptr(d * src_rows + ::min(2*y+0, src_rows-1))[::min(2*x+1, src_cols-1)];
                          dst_reg += src.ptr(d * src_rows + ::min(2*y+1, src_rows-1))[::min(2*x+1, src_cols-1)];
wester committed
271 272 273 274 275 276 277

                    dst.ptr(d * dst_rows + y)[x] = saturate_cast<T>(dst_reg);
                }
            }
        }

        template<typename T>
wester committed
278
        void data_step_down_gpu(int dst_cols, int dst_rows, int src_cols, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream)
wester committed
279 280 281 282 283 284 285
        {
            dim3 threads(32, 8, 1);
            dim3 grid(1, 1, 1);

            grid.x = divUp(dst_cols, threads.x);
            grid.y = divUp(dst_rows, threads.y);

wester committed
286
            data_step_down<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_cols, src_rows, (PtrStepSz<T>)src, (PtrStepSz<T>)dst);
wester committed
287 288 289 290 291 292
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }

wester committed
293 294
        template void data_step_down_gpu<short>(int dst_cols, int dst_rows, int src_cols, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream);
        template void data_step_down_gpu<float>(int dst_cols, int dst_rows, int src_cols, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream);
wester committed
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535

        ///////////////////////////////////////////////////////////////
        /////////////////// level up messages  ////////////////////////
        ///////////////////////////////////////////////////////////////

        template <typename T>
        __global__ void level_up_message(int dst_cols, int dst_rows, int src_rows, const PtrStep<T> src, PtrStep<T> dst)
        {
            const int x = blockIdx.x * blockDim.x + threadIdx.x;
            const int y = blockIdx.y * blockDim.y + threadIdx.y;

            if (x < dst_cols && y < dst_rows)
            {
                const size_t dst_disp_step = dst.step * dst_rows / sizeof(T);
                const size_t src_disp_step = src.step * src_rows / sizeof(T);

                T*       dstr = dst.ptr(y  ) + x;
                const T* srcr = src.ptr(y/2) + x/2;

                for (int d = 0; d < cndisp; ++d)
                    dstr[d * dst_disp_step] = srcr[d * src_disp_step];
            }
        }

        template <typename T>
        void level_up_messages_gpu(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream)
        {
            dim3 threads(32, 8, 1);
            dim3 grid(1, 1, 1);

            grid.x = divUp(dst_cols, threads.x);
            grid.y = divUp(dst_rows, threads.y);

            int src_idx = (dst_idx + 1) & 1;

            level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (PtrStepSz<T>)mus[src_idx], (PtrStepSz<T>)mus[dst_idx]);
            cudaSafeCall( cudaGetLastError() );

            level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (PtrStepSz<T>)mds[src_idx], (PtrStepSz<T>)mds[dst_idx]);
            cudaSafeCall( cudaGetLastError() );

            level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (PtrStepSz<T>)mls[src_idx], (PtrStepSz<T>)mls[dst_idx]);
            cudaSafeCall( cudaGetLastError() );

            level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (PtrStepSz<T>)mrs[src_idx], (PtrStepSz<T>)mrs[dst_idx]);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }

        template void level_up_messages_gpu<short>(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream);
        template void level_up_messages_gpu<float>(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream);

        ///////////////////////////////////////////////////////////////
        ////////////////////  calc all iterations /////////////////////
        ///////////////////////////////////////////////////////////////

        template <typename T>
        __device__ void calc_min_linear_penalty(T* dst, size_t step)
        {
            float prev = dst[0];
            float cur;
            for (int disp = 1; disp < cndisp; ++disp)
            {
                prev += cdisc_single_jump;
                cur = dst[step * disp];
                if (prev < cur)
                {
                    cur = prev;
                    dst[step * disp] = saturate_cast<T>(prev);
                }
                prev = cur;
            }

            prev = dst[(cndisp - 1) * step];
            for (int disp = cndisp - 2; disp >= 0; disp--)
            {
                prev += cdisc_single_jump;
                cur = dst[step * disp];
                if (prev < cur)
                {
                    cur = prev;
                    dst[step * disp] = saturate_cast<T>(prev);
                }
                prev = cur;
            }
        }

        template <typename T>
        __device__ void message(const T* msg1, const T* msg2, const T* msg3, const T* data, T* dst, size_t msg_disp_step, size_t data_disp_step)
        {
            float minimum = device::numeric_limits<float>::max();

            for(int i = 0; i < cndisp; ++i)
            {
                float dst_reg  = msg1[msg_disp_step * i];
                      dst_reg += msg2[msg_disp_step * i];
                      dst_reg += msg3[msg_disp_step * i];
                      dst_reg += data[data_disp_step * i];

                if (dst_reg < minimum)
                    minimum = dst_reg;

                dst[msg_disp_step * i] = saturate_cast<T>(dst_reg);
            }

            calc_min_linear_penalty(dst, msg_disp_step);

            minimum += cmax_disc_term;

            float sum = 0;
            for(int i = 0; i < cndisp; ++i)
            {
                float dst_reg = dst[msg_disp_step * i];
                if (dst_reg > minimum)
                {
                    dst_reg = minimum;
                    dst[msg_disp_step * i] = saturate_cast<T>(minimum);
                }
                sum += dst_reg;
            }
            sum /= cndisp;

            for(int i = 0; i < cndisp; ++i)
                dst[msg_disp_step * i] -= sum;
        }

        template <typename T>
        __global__ void one_iteration(int t, int elem_step, T* u, T* d, T* l, T* r, const PtrStep<T> data, int cols, int rows)
        {
            const int y = blockIdx.y * blockDim.y + threadIdx.y;
            const int x = ((blockIdx.x * blockDim.x + threadIdx.x) << 1) + ((y + t) & 1);

            if ((y > 0) && (y < rows - 1) && (x > 0) && (x < cols - 1))
            {
                T* us = u + y * elem_step + x;
                T* ds = d + y * elem_step + x;
                T* ls = l + y * elem_step + x;
                T* rs = r + y * elem_step + x;
                const T* dt = data.ptr(y) + x;

                size_t msg_disp_step = elem_step * rows;
                size_t data_disp_step = data.step * rows / sizeof(T);

                message(us + elem_step, ls         + 1, rs - 1, dt, us, msg_disp_step, data_disp_step);
                message(ds - elem_step, ls         + 1, rs - 1, dt, ds, msg_disp_step, data_disp_step);
                message(us + elem_step, ds - elem_step, rs - 1, dt, rs, msg_disp_step, data_disp_step);
                message(us + elem_step, ds - elem_step, ls + 1, dt, ls, msg_disp_step, data_disp_step);
            }
        }

        template <typename T>
        void calc_all_iterations_gpu(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d,
            const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream)
        {
            dim3 threads(32, 8, 1);
            dim3 grid(1, 1, 1);

            grid.x = divUp(cols, threads.x << 1);
            grid.y = divUp(rows, threads.y);

            int elem_step = (int)(u.step / sizeof(T));

            for(int t = 0; t < iters; ++t)
            {
                one_iteration<T><<<grid, threads, 0, stream>>>(t, elem_step, (T*)u.data, (T*)d.data, (T*)l.data, (T*)r.data, (PtrStepSz<T>)data, cols, rows);
                cudaSafeCall( cudaGetLastError() );

                if (stream == 0)
                    cudaSafeCall( cudaDeviceSynchronize() );
            }
        }

        template void calc_all_iterations_gpu<short>(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream);
        template void calc_all_iterations_gpu<float>(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream);

        ///////////////////////////////////////////////////////////////
        /////////////////////////// output ////////////////////////////
        ///////////////////////////////////////////////////////////////

        template <typename T>
        __global__ void output(const int elem_step, const T* u, const T* d, const T* l, const T* r, const T* data,
            PtrStepSz<short> disp)
        {
            const int x = blockIdx.x * blockDim.x + threadIdx.x;
            const int y = blockIdx.y * blockDim.y + threadIdx.y;

            if (y > 0 && y < disp.rows - 1 && x > 0 && x < disp.cols - 1)
            {
                const T* us = u + (y + 1) * elem_step + x;
                const T* ds = d + (y - 1) * elem_step + x;
                const T* ls = l + y * elem_step + (x + 1);
                const T* rs = r + y * elem_step+ (x - 1);
                const T* dt = data + y * elem_step + x;

                size_t disp_step = disp.rows * elem_step;

                int best = 0;
                float best_val = numeric_limits<float>::max();
                for (int d = 0; d < cndisp; ++d)
                {
                    float val  = us[d * disp_step];
                          val += ds[d * disp_step];
                          val += ls[d * disp_step];
                          val += rs[d * disp_step];
                          val += dt[d * disp_step];

                    if (val < best_val)
                    {
                        best_val = val;
                        best = d;
                    }
                }

                disp.ptr(y)[x] = saturate_cast<short>(best);
            }
        }

        template <typename T>
        void output_gpu(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data,
            const PtrStepSz<short>& disp, cudaStream_t stream)
        {
            dim3 threads(32, 8, 1);
            dim3 grid(1, 1, 1);

            grid.x = divUp(disp.cols, threads.x);
            grid.y = divUp(disp.rows, threads.y);

            int elem_step = static_cast<int>(u.step/sizeof(T));

            output<T><<<grid, threads, 0, stream>>>(elem_step, (const T*)u.data, (const T*)d.data, (const T*)l.data, (const T*)r.data, (const T*)data.data, disp);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }

        template void output_gpu<short>(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, const PtrStepSz<short>& disp, cudaStream_t stream);
        template void output_gpu<float>(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, const PtrStepSz<short>& disp, cudaStream_t stream);
    } // namespace stereobp
wester committed
536
}}} // namespace cv { namespace gpu { namespace device
wester committed
537 538

#endif /* CUDA_DISABLER */