ImfHuf.cpp 23.9 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// *       Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// *       Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// *       Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////




//-----------------------------------------------------------------------------
//
//	16-bit Huffman compression and decompression.
//
//	The source code in this file is derived from the 8-bit
//	Huffman compression and decompression routines written
//	by Christian Rouet for his PIZ image file format.
//
//-----------------------------------------------------------------------------

#include <ImfHuf.h>
#include <ImfInt64.h>
#include <ImfAutoArray.h>
#include "Iex.h"
#include <string.h>
#include <assert.h>
#include <algorithm>


using namespace std;
using namespace Iex;

namespace Imf {
namespace {


const int HUF_ENCBITS = 16;			// literal (value) bit length
const int HUF_DECBITS = 14;			// decoding bit size (>= 8)

const int HUF_ENCSIZE = (1 << HUF_ENCBITS) + 1;	// encoding table size
const int HUF_DECSIZE =  1 << HUF_DECBITS;	// decoding table size
const int HUF_DECMASK = HUF_DECSIZE - 1;


struct HufDec
{				// short code		long code
                //-------------------------------
    int		len:8;		// code length		0
    int		lit:24;		// lit			p size
    int	*	p;		// 0			lits
};


void
invalidNBits ()
{
    throw InputExc ("Error in header for Huffman-encoded data "
            "(invalid number of bits).");
}


void
tooMuchData ()
{
    throw InputExc ("Error in Huffman-encoded data "
            "(decoded data are longer than expected).");
}


void
notEnoughData ()
{
    throw InputExc ("Error in Huffman-encoded data "
            "(decoded data are shorter than expected).");
}


void
invalidCode ()
{
    throw InputExc ("Error in Huffman-encoded data "
            "(invalid code).");
}


void
invalidTableSize ()
{
    throw InputExc ("Error in Huffman-encoded data "
            "(invalid code table size).");
}


void
unexpectedEndOfTable ()
{
    throw InputExc ("Error in Huffman-encoded data "
            "(unexpected end of code table data).");
}


void
tableTooLong ()
{
    throw InputExc ("Error in Huffman-encoded data "
            "(code table is longer than expected).");
}


void
invalidTableEntry ()
{
    throw InputExc ("Error in Huffman-encoded data "
            "(invalid code table entry).");
}


inline Int64
hufLength (Int64 code)
{
    return code & 63;
}


inline Int64
hufCode (Int64 code)
{
    return code >> 6;
}


inline void
outputBits (int nBits, Int64 bits, Int64 &c, int &lc, char *&out)
{
    c <<= nBits;
    lc += nBits;

    c |= bits;

    while (lc >= 8)
    *out++ = (c >> (lc -= 8));
}


inline Int64
getBits (int nBits, Int64 &c, int &lc, const char *&in)
{
    while (lc < nBits)
    {
    c = (c << 8) | *(unsigned char *)(in++);
    lc += 8;
    }

    lc -= nBits;
    return (c >> lc) & ((1 << nBits) - 1);
}


//
// ENCODING TABLE BUILDING & (UN)PACKING
//

//
// Build a "canonical" Huffman code table:
//	- for each (uncompressed) symbol, hcode contains the length
//	  of the corresponding code (in the compressed data)
//	- canonical codes are computed and stored in hcode
//	- the rules for constructing canonical codes are as follows:
//	  * shorter codes (if filled with zeroes to the right)
//	    have a numerically higher value than longer codes
//	  * for codes with the same length, numerical values
//	    increase with numerical symbol values
//	- because the canonical code table can be constructed from
//	  symbol lengths alone, the code table can be transmitted
//	  without sending the actual code values
//	- see http://www.compressconsult.com/huffman/
//

void
hufCanonicalCodeTable (Int64 hcode[HUF_ENCSIZE])
{
    Int64 n[59];

    //
    // For each i from 0 through 58, count the
    // number of different codes of length i, and
    // store the count in n[i].
    //

    for (int i = 0; i <= 58; ++i)
    n[i] = 0;

    for (int i = 0; i < HUF_ENCSIZE; ++i)
    n[hcode[i]] += 1;

    //
    // For each i from 58 through 1, compute the
    // numerically lowest code with length i, and
    // store that code in n[i].
    //

    Int64 c = 0;

    for (int i = 58; i > 0; --i)
    {
    Int64 nc = ((c + n[i]) >> 1);
    n[i] = c;
    c = nc;
    }

    //
    // hcode[i] contains the length, l, of the
    // code for symbol i.  Assign the next available
    // code of length l to the symbol and store both
    // l and the code in hcode[i].
    //

    for (int i = 0; i < HUF_ENCSIZE; ++i)
    {
    int l = hcode[i];

    if (l > 0)
        hcode[i] = l | (n[l]++ << 6);
    }
}


//
// Compute Huffman codes (based on frq input) and store them in frq:
//	- code structure is : [63:lsb - 6:msb] | [5-0: bit length];
//	- max code length is 58 bits;
//	- codes outside the range [im-iM] have a null length (unused values);
//	- original frequencies are destroyed;
//	- encoding tables are used by hufEncode() and hufBuildDecTable();
//


struct FHeapCompare
{
    bool operator () (Int64 *a, Int64 *b) {return *a > *b;}
};


void
hufBuildEncTable
    (Int64*	frq,	// io: input frequencies [HUF_ENCSIZE], output table
     int*	im,	//  o: min frq index
     int*	iM)	//  o: max frq index
{
    //
    // This function assumes that when it is called, array frq
    // indicates the frequency of all possible symbols in the data
    // that are to be Huffman-encoded.  (frq[i] contains the number
    // of occurrences of symbol i in the data.)
    //
    // The loop below does three things:
    //
    // 1) Finds the minimum and maximum indices that point
    //    to non-zero entries in frq:
    //
    //     frq[im] != 0, and frq[i] == 0 for all i < im
    //     frq[iM] != 0, and frq[i] == 0 for all i > iM
    //
    // 2) Fills array fHeap with pointers to all non-zero
    //    entries in frq.
    //
    // 3) Initializes array hlink such that hlink[i] == i
    //    for all array entries.
    //

    AutoArray <int, HUF_ENCSIZE> hlink;
    AutoArray <Int64 *, HUF_ENCSIZE> fHeap;

    *im = 0;

    while (!frq[*im])
    (*im)++;

    int nf = 0;

    for (int i = *im; i < HUF_ENCSIZE; i++)
    {
    hlink[i] = i;

    if (frq[i])
    {
        fHeap[nf] = &frq[i];
        nf++;
        *iM = i;
    }
    }

    //
    // Add a pseudo-symbol, with a frequency count of 1, to frq;
    // adjust the fHeap and hlink array accordingly.  Function
    // hufEncode() uses the pseudo-symbol for run-length encoding.
    //

    (*iM)++;
    frq[*iM] = 1;
    fHeap[nf] = &frq[*iM];
    nf++;

    //
    // Build an array, scode, such that scode[i] contains the number
    // of bits assigned to symbol i.  Conceptually this is done by
    // constructing a tree whose leaves are the symbols with non-zero
    // frequency:
    //
    //     Make a heap that contains all symbols with a non-zero frequency,
    //     with the least frequent symbol on top.
    //
    //     Repeat until only one symbol is left on the heap:
    //
    //         Take the two least frequent symbols off the top of the heap.
    //         Create a new node that has first two nodes as children, and
    //         whose frequency is the sum of the frequencies of the first
    //         two nodes.  Put the new node back into the heap.
    //
    // The last node left on the heap is the root of the tree.  For each
    // leaf node, the distance between the root and the leaf is the length
    // of the code for the corresponding symbol.
    //
    // The loop below doesn't actually build the tree; instead we compute
    // the distances of the leaves from the root on the fly.  When a new
    // node is added to the heap, then that node's descendants are linked
    // into a single linear list that starts at the new node, and the code
    // lengths of the descendants (that is, their distance from the root
    // of the tree) are incremented by one.
    //

    make_heap (&fHeap[0], &fHeap[nf], FHeapCompare());

    AutoArray <Int64, HUF_ENCSIZE> scode;
    memset (scode, 0, sizeof (Int64) * HUF_ENCSIZE);

    while (nf > 1)
    {
    //
    // Find the indices, mm and m, of the two smallest non-zero frq
    // values in fHeap, add the smallest frq to the second-smallest
    // frq, and remove the smallest frq value from fHeap.
    //

    int mm = fHeap[0] - frq;
    pop_heap (&fHeap[0], &fHeap[nf], FHeapCompare());
    --nf;

    int m = fHeap[0] - frq;
    pop_heap (&fHeap[0], &fHeap[nf], FHeapCompare());

    frq[m ] += frq[mm];
    push_heap (&fHeap[0], &fHeap[nf], FHeapCompare());

    //
    // The entries in scode are linked into lists with the
    // entries in hlink serving as "next" pointers and with
    // the end of a list marked by hlink[j] == j.
    //
    // Traverse the lists that start at scode[m] and scode[mm].
    // For each element visited, increment the length of the
    // corresponding code by one bit. (If we visit scode[j]
    // during the traversal, then the code for symbol j becomes
    // one bit longer.)
    //
    // Merge the lists that start at scode[m] and scode[mm]
    // into a single list that starts at scode[m].
    //

    //
    // Add a bit to all codes in the first list.
    //

    for (int j = m; true; j = hlink[j])
    {
        scode[j]++;

        assert (scode[j] <= 58);

        if (hlink[j] == j)
        {
        //
        // Merge the two lists.
        //

        hlink[j] = mm;
        break;
        }
    }

    //
    // Add a bit to all codes in the second list
    //

    for (int j = mm; true; j = hlink[j])
    {
        scode[j]++;

        assert (scode[j] <= 58);

        if (hlink[j] == j)
        break;
    }
    }

    //
    // Build a canonical Huffman code table, replacing the code
    // lengths in scode with (code, code length) pairs.  Copy the
    // code table from scode into frq.
    //

    hufCanonicalCodeTable (scode);
    memcpy (frq, scode, sizeof (Int64) * HUF_ENCSIZE);
}


//
// Pack an encoding table:
//	- only code lengths, not actual codes, are stored
//	- runs of zeroes are compressed as follows:
//
//	  unpacked		packed
//	  --------------------------------
//	  1 zero		0	(6 bits)
//	  2 zeroes		59
//	  3 zeroes		60
//	  4 zeroes		61
//	  5 zeroes		62
//	  n zeroes (6 or more)	63 n-6	(6 + 8 bits)
//

const int SHORT_ZEROCODE_RUN = 59;
const int LONG_ZEROCODE_RUN  = 63;
const int SHORTEST_LONG_RUN  = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
const int LONGEST_LONG_RUN   = 255 + SHORTEST_LONG_RUN;


void
hufPackEncTable
    (const Int64*	hcode,		// i : encoding table [HUF_ENCSIZE]
     int		im,		// i : min hcode index
     int		iM,		// i : max hcode index
     char**		pcode)		//  o: ptr to packed table (updated)
{
    char *p = *pcode;
    Int64 c = 0;
    int lc = 0;

    for (; im <= iM; im++)
    {
    int l = hufLength (hcode[im]);

    if (l == 0)
    {
        int zerun = 1;

        while ((im < iM) && (zerun < LONGEST_LONG_RUN))
        {
        if (hufLength (hcode[im+1]) > 0 )
            break;
        im++;
        zerun++;
        }

        if (zerun >= 2)
        {
        if (zerun >= SHORTEST_LONG_RUN)
        {
            outputBits (6, LONG_ZEROCODE_RUN, c, lc, p);
            outputBits (8, zerun - SHORTEST_LONG_RUN, c, lc, p);
        }
        else
        {
            outputBits (6, SHORT_ZEROCODE_RUN + zerun - 2, c, lc, p);
        }
        continue;
        }
    }

    outputBits (6, l, c, lc, p);
    }

    if (lc > 0)
    *p++ = (unsigned char) (c << (8 - lc));

    *pcode = p;
}


//
// Unpack an encoding table packed by hufPackEncTable():
//

void
hufUnpackEncTable
    (const char**	pcode,		// io: ptr to packed table (updated)
     int		ni,		// i : input size (in bytes)
     int		im,		// i : min hcode index
     int		iM,		// i : max hcode index
     Int64*		hcode)		//  o: encoding table [HUF_ENCSIZE]
{
    memset (hcode, 0, sizeof (Int64) * HUF_ENCSIZE);

    const char *p = *pcode;
    Int64 c = 0;
    int lc = 0;

    for (; im <= iM; im++)
    {
    if (p - *pcode > ni)
        unexpectedEndOfTable();

    Int64 l = hcode[im] = getBits (6, c, lc, p); // code length

    if (l == (Int64) LONG_ZEROCODE_RUN)
    {
        if (p - *pcode > ni)
        unexpectedEndOfTable();

        int zerun = getBits (8, c, lc, p) + SHORTEST_LONG_RUN;

        if (im + zerun > iM + 1)
        tableTooLong();

        while (zerun--)
        hcode[im++] = 0;

        im--;
    }
    else if (l >= (Int64) SHORT_ZEROCODE_RUN)
    {
        int zerun = l - SHORT_ZEROCODE_RUN + 2;

        if (im + zerun > iM + 1)
        tableTooLong();

        while (zerun--)
        hcode[im++] = 0;

        im--;
    }
    }

    *pcode = (char *) p;

    hufCanonicalCodeTable (hcode);
}


//
// DECODING TABLE BUILDING
//

//
// Clear a newly allocated decoding table so that it contains only zeroes.
//

void
hufClearDecTable
    (HufDec *		hdecod)		// io: (allocated by caller)
                        //     decoding table [HUF_DECSIZE]
{
    memset (hdecod, 0, sizeof (HufDec) * HUF_DECSIZE);
}


//
// Build a decoding hash table based on the encoding table hcode:
//	- short codes (<= HUF_DECBITS) are resolved with a single table access;
//	- long code entry allocations are not optimized, because long codes are
//	  unfrequent;
//	- decoding tables are used by hufDecode();
//

void
hufBuildDecTable
    (const Int64*	hcode,		// i : encoding table
     int		im,		// i : min index in hcode
     int		iM,		// i : max index in hcode
     HufDec *		hdecod)		//  o: (allocated by caller)
                        //     decoding table [HUF_DECSIZE]
{
    //
    // Init hashtable & loop on all codes.
    // Assumes that hufClearDecTable(hdecod) has already been called.
    //

    for (; im <= iM; im++)
    {
    Int64 c = hufCode (hcode[im]);
    int l = hufLength (hcode[im]);

    if (c >> l)
    {
        //
        // Error: c is supposed to be an l-bit code,
        // but c contains a value that is greater
        // than the largest l-bit number.
        //

        invalidTableEntry();
    }

    if (l > HUF_DECBITS)
    {
        //
        // Long code: add a secondary entry
        //

        HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));

        if (pl->len)
        {
        //
        // Error: a short code has already
        // been stored in table entry *pl.
        //

        invalidTableEntry();
        }

        pl->lit++;

        if (pl->p)
        {
        int *p = pl->p;
        pl->p = new int [pl->lit];

        for (int i = 0; i < pl->lit - 1; ++i)
            pl->p[i] = p[i];

        delete [] p;
        }
        else
        {
        pl->p = new int [1];
        }

        pl->p[pl->lit - 1]= im;
    }
    else if (l)
    {
        //
        // Short code: init all primary entries
        //

        HufDec *pl = hdecod + (c << (HUF_DECBITS - l));

        for (Int64 i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++)
        {
        if (pl->len || pl->p)
        {
            //
            // Error: a short code or a long code has
            // already been stored in table entry *pl.
            //

            invalidTableEntry();
        }

        pl->len = l;
        pl->lit = im;
        }
    }
    }
}


//
// Free the long code entries of a decoding table built by hufBuildDecTable()
//

void
hufFreeDecTable (HufDec *hdecod)	// io: Decoding table
{
    for (int i = 0; i < HUF_DECSIZE; i++)
    {
    if (hdecod[i].p)
    {
        delete [] hdecod[i].p;
        hdecod[i].p = 0;
    }
    }
}


//
// ENCODING
//

inline void
outputCode (Int64 code, Int64 &c, int &lc, char *&out)
{
    outputBits (hufLength (code), hufCode (code), c, lc, out);
}


inline void
sendCode (Int64 sCode, int runCount, Int64 runCode,
      Int64 &c, int &lc, char *&out)
{
    static const int RLMIN = 32; // min count to activate run-length coding

    if (runCount > RLMIN)
    {
    outputCode (sCode, c, lc, out);
    outputCode (runCode, c, lc, out);
    outputBits (8, runCount, c, lc, out);
    }
    else
    {
    while (runCount-- >= 0)
        outputCode (sCode, c, lc, out);
    }
}


//
// Encode (compress) ni values based on the Huffman encoding table hcode:
//

int
hufEncode				// return: output size (in bits)
    (const Int64*  	    hcode,	// i : encoding table
     const unsigned short*  in,		// i : uncompressed input buffer
     const int     	    ni,		// i : input buffer size (in bytes)
     int           	    rlc,	// i : rl code
     char*         	    out)	//  o: compressed output buffer
{
    char *outStart = out;
    Int64 c = 0;	// bits not yet written to out
    int lc = 0;		// number of valid bits in c (LSB)
    int s = in[0];
    int cs = 0;

    //
    // Loop on input values
    //

    for (int i = 1; i < ni; i++)
    {
    //
    // Count same values or send code
    //

    if (s == in[i] && cs < 255)
    {
        cs++;
    }
    else
    {
        sendCode (hcode[s], cs, hcode[rlc], c, lc, out);
        cs=0;
    }

    s = in[i];
    }

    //
    // Send remaining code
    //

    sendCode (hcode[s], cs, hcode[rlc], c, lc, out);

    if (lc)
    *out = (c << (8 - lc)) & 0xff;

    return (out - outStart) * 8 + lc;
}


//
// DECODING
//

//
// In order to force the compiler to inline them,
// getChar() and getCode() are implemented as macros
// instead of "inline" functions.
//

#define getChar(c, lc, in)			\
{						\
    c = (c << 8) | *(unsigned char *)(in++);	\
    lc += 8;					\
}


#define getCode(po, rlc, c, lc, in, out, oe)	\
{						\
    if (po == rlc)				\
    {						\
    if (lc < 8)				\
        getChar(c, lc, in);			\
                        \
    lc -= 8;				\
                        \
    unsigned char cs = (c >> lc);		\
                        \
    if (out + cs > oe)			\
        tooMuchData();			\
                        \
    unsigned short s = out[-1];		\
                        \
    while (cs-- > 0)			\
        *out++ = s;				\
    }						\
    else if (out < oe)				\
    {						\
    *out++ = po;				\
    }						\
    else					\
    {						\
    tooMuchData();				\
    }						\
}


//
// Decode (uncompress) ni bits based on encoding & decoding tables:
//

void
hufDecode
    (const Int64 * 	hcode,	// i : encoding table
     const HufDec * 	hdecod,	// i : decoding table
     const char* 	in,	// i : compressed input buffer
     int		ni,	// i : input size (in bits)
     int		rlc,	// i : run-length code
     int		no,	// i : expected output size (in bytes)
     unsigned short*	out)	//  o: uncompressed output buffer
{
    Int64 c = 0;
    int lc = 0;
    unsigned short * outb = out;
    unsigned short * oe = out + no;
    const char * ie = in + (ni + 7) / 8; // input byte size

    //
    // Loop on input bytes
    //

    while (in < ie)
    {
    getChar (c, lc, in);

    //
    // Access decoding table
    //

    while (lc >= HUF_DECBITS)
    {
        const HufDec pl = hdecod[(c >> (lc-HUF_DECBITS)) & HUF_DECMASK];

        if (pl.len)
        {
        //
        // Get short code
        //

        lc -= pl.len;
        getCode (pl.lit, rlc, c, lc, in, out, oe);
        }
        else
        {
        if (!pl.p)
            invalidCode(); // wrong code

        //
        // Search long code
        //

        int j;

        for (j = 0; j < pl.lit; j++)
        {
            int	l = hufLength (hcode[pl.p[j]]);

            while (lc < l && in < ie)	// get more bits
            getChar (c, lc, in);

            if (lc >= l)
            {
            if (hufCode (hcode[pl.p[j]]) ==
                ((c >> (lc - l)) & ((Int64(1) << l) - 1)))
            {
                //
                // Found : get long code
                //

                lc -= l;
                getCode (pl.p[j], rlc, c, lc, in, out, oe);
                break;
            }
            }
        }

        if (j == pl.lit)
            invalidCode(); // Not found
        }
    }
    }

    //
    // Get remaining (short) codes
    //

    int i = (8 - ni) & 7;
    c >>= i;
    lc -= i;

    while (lc > 0)
    {
    const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];

    if (pl.len)
    {
        lc -= pl.len;
        getCode (pl.lit, rlc, c, lc, in, out, oe);
    }
    else
    {
        invalidCode(); // wrong (long) code
    }
    }

    if (out - outb != no)
    notEnoughData ();
}


void
countFrequencies (Int64 freq[HUF_ENCSIZE],
          const unsigned short data[/*n*/],
          int n)
{
    for (int i = 0; i < HUF_ENCSIZE; ++i)
    freq[i] = 0;

    for (int i = 0; i < n; ++i)
    ++freq[data[i]];
}


void
writeUInt (char buf[4], unsigned int i)
{
    unsigned char *b = (unsigned char *) buf;

    b[0] = i;
    b[1] = i >> 8;
    b[2] = i >> 16;
    b[3] = i >> 24;
}


unsigned int
readUInt (const char buf[4])
{
    const unsigned char *b = (const unsigned char *) buf;

    return ( b[0]        & 0x000000ff) |
       ((b[1] <<  8) & 0x0000ff00) |
       ((b[2] << 16) & 0x00ff0000) |
       ((b[3] << 24) & 0xff000000);
}

} // namespace


//
// EXTERNAL INTERFACE
//


int
hufCompress (const unsigned short raw[],
         int nRaw,
         char compressed[])
{
    if (nRaw == 0)
    return 0;

    AutoArray <Int64, HUF_ENCSIZE> freq;

    countFrequencies (freq, raw, nRaw);

    int im, iM;
    hufBuildEncTable (freq, &im, &iM);

    char *tableStart = compressed + 20;
    char *tableEnd   = tableStart;
    hufPackEncTable (freq, im, iM, &tableEnd);
    int tableLength = tableEnd - tableStart;

    char *dataStart = tableEnd;
    int nBits = hufEncode (freq, raw, nRaw, iM, dataStart);
    int dataLength = (nBits + 7) / 8;

    writeUInt (compressed,      im);
    writeUInt (compressed +  4, iM);
    writeUInt (compressed +  8, tableLength);
    writeUInt (compressed + 12, nBits);
    writeUInt (compressed + 16, 0);	// room for future extensions

    return dataStart + dataLength - compressed;
}


void
hufUncompress (const char compressed[],
           int nCompressed,
           unsigned short raw[],
           int nRaw)
{
    if (nCompressed == 0)
    {
    if (nRaw != 0)
        notEnoughData();

    return;
    }

    int im = readUInt (compressed);
    int iM = readUInt (compressed + 4);
    // int tableLength = readUInt (compressed + 8);
    int nBits = readUInt (compressed + 12);

    if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE)
    invalidTableSize();

    const char *ptr = compressed + 20;

    AutoArray <Int64, HUF_ENCSIZE> freq;
    AutoArray <HufDec, HUF_DECSIZE> hdec;

    hufClearDecTable (hdec);

    hufUnpackEncTable (&ptr, nCompressed - (ptr - compressed), im, iM, freq);

    try
    {
    if (nBits > 8 * (nCompressed - (ptr - compressed)))
        invalidNBits();

    hufBuildDecTable (freq, im, iM, hdec);
    hufDecode (freq, hdec, ptr, nBits, iM, nRaw, raw);
    }
    catch (...)
    {
    hufFreeDecTable (hdec);
    throw;
    }

    hufFreeDecTable (hdec);
}


} // namespace Imf