object_detection.rst 12.7 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
Object Detection
================

.. highlight:: cpp



gpu::HOGDescriptor
------------------
.. ocv:struct:: gpu::HOGDescriptor

The class implements Histogram of Oriented Gradients ([Dalal2005]_) object detector. ::

    struct CV_EXPORTS HOGDescriptor
    {
        enum { DEFAULT_WIN_SIGMA = -1 };
        enum { DEFAULT_NLEVELS = 64 };
        enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL };

        HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16),
                      Size block_stride=Size(8, 8), Size cell_size=Size(8, 8),
                      int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA,
                      double threshold_L2hys=0.2, bool gamma_correction=true,
                      int nlevels=DEFAULT_NLEVELS);

        size_t getDescriptorSize() const;
        size_t getBlockHistogramSize() const;

        void setSVMDetector(const vector<float>& detector);

        static vector<float> getDefaultPeopleDetector();
        static vector<float> getPeopleDetector48x96();
        static vector<float> getPeopleDetector64x128();

        void detect(const GpuMat& img, vector<Point>& found_locations,
                    double hit_threshold=0, Size win_stride=Size(),
                    Size padding=Size());

        void detectMultiScale(const GpuMat& img, vector<Rect>& found_locations,
                              double hit_threshold=0, Size win_stride=Size(),
                              Size padding=Size(), double scale0=1.05,
                              int group_threshold=2);

        void getDescriptors(const GpuMat& img, Size win_stride,
                            GpuMat& descriptors,
                            int descr_format=DESCR_FORMAT_COL_BY_COL);

        Size win_size;
        Size block_size;
        Size block_stride;
        Size cell_size;
        int nbins;
        double win_sigma;
        double threshold_L2hys;
        bool gamma_correction;
        int nlevels;

    private:
        // Hidden
    }


Interfaces of all methods are kept similar to the ``CPU HOG`` descriptor and detector analogues as much as possible.

.. note::

   * An example applying the HOG descriptor for people detection can be found at opencv_source_code/samples/cpp/peopledetect.cpp
   * A GPU example applying the HOG descriptor for people detection can be found at opencv_source_code/samples/gpu/hog.cpp

   * (Python) An example applying the HOG descriptor for people detection can be found at opencv_source_code/samples/python2/peopledetect.py

gpu::HOGDescriptor::HOGDescriptor
-------------------------------------
Creates the ``HOG`` descriptor and detector.

.. ocv:function:: gpu::HOGDescriptor::HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16), Size block_stride=Size(8, 8), Size cell_size=Size(8, 8), int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA, double threshold_L2hys=0.2, bool gamma_correction=true, int nlevels=DEFAULT_NLEVELS)

   :param win_size: Detection window size. Align to block size and block stride.

   :param block_size: Block size in pixels. Align to cell size. Only (16,16) is supported for now.

   :param block_stride: Block stride. It must be a multiple of cell size.

   :param cell_size: Cell size. Only (8, 8) is supported for now.

   :param nbins: Number of bins. Only 9 bins per cell are supported for now.

   :param win_sigma: Gaussian smoothing window parameter.

   :param threshold_L2hys: L2-Hys normalization method shrinkage.

   :param gamma_correction: Flag to specify whether the gamma correction preprocessing is required or not.

   :param nlevels: Maximum number of detection window increases.



gpu::HOGDescriptor::getDescriptorSize
-----------------------------------------
Returns the number of coefficients required for the classification.

.. ocv:function:: size_t gpu::HOGDescriptor::getDescriptorSize() const



gpu::HOGDescriptor::getBlockHistogramSize
---------------------------------------------
Returns the block histogram size.

.. ocv:function:: size_t gpu::HOGDescriptor::getBlockHistogramSize() const



gpu::HOGDescriptor::setSVMDetector
--------------------------------------
Sets coefficients for the linear SVM classifier.

.. ocv:function:: void gpu::HOGDescriptor::setSVMDetector(const vector<float>& detector)



gpu::HOGDescriptor::getDefaultPeopleDetector
------------------------------------------------
Returns coefficients of the classifier trained for people detection (for default window size).

.. ocv:function:: static vector<float> gpu::HOGDescriptor::getDefaultPeopleDetector()



gpu::HOGDescriptor::getPeopleDetector48x96
----------------------------------------------
Returns coefficients of the classifier trained for people detection (for 48x96 windows).

.. ocv:function:: static vector<float> gpu::HOGDescriptor::getPeopleDetector48x96()



gpu::HOGDescriptor::getPeopleDetector64x128
-----------------------------------------------
Returns coefficients of the classifier trained for people detection (for 64x128 windows).

.. ocv:function:: static vector<float> gpu::HOGDescriptor::getPeopleDetector64x128()



gpu::HOGDescriptor::detect
------------------------------
Performs object detection without a multi-scale window.

.. ocv:function:: void gpu::HOGDescriptor::detect(const GpuMat& img, vector<Point>& found_locations, double hit_threshold=0, Size win_stride=Size(), Size padding=Size())

   :param img: Source image.  ``CV_8UC1``  and  ``CV_8UC4`` types are supported for now.

   :param found_locations: Left-top corner points of detected objects boundaries.

   :param hit_threshold: Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specfied in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.

   :param win_stride: Window stride. It must be a multiple of block stride.

   :param padding: Mock parameter to keep the CPU interface compatibility. It must be (0,0).



gpu::HOGDescriptor::detectMultiScale
----------------------------------------
Performs object detection with a multi-scale window.

.. ocv:function:: void gpu::HOGDescriptor::detectMultiScale(const GpuMat& img, vector<Rect>& found_locations, double hit_threshold=0, Size win_stride=Size(), Size padding=Size(), double scale0=1.05, int group_threshold=2)

   :param img: Source image. See  :ocv:func:`gpu::HOGDescriptor::detect`  for type limitations.

   :param found_locations: Detected objects boundaries.

   :param hit_threshold: Threshold for the distance between features and SVM classifying plane. See  :ocv:func:`gpu::HOGDescriptor::detect`  for details.

   :param win_stride: Window stride. It must be a multiple of block stride.

   :param padding: Mock parameter to keep the CPU interface compatibility. It must be (0,0).

   :param scale0: Coefficient of the detection window increase.

   :param group_threshold: Coefficient to regulate the similarity threshold. When detected, some objects can be covered by many rectangles. 0 means not to perform grouping. See  :ocv:func:`groupRectangles` .



gpu::HOGDescriptor::getDescriptors
--------------------------------------
Returns block descriptors computed for the whole image.

.. ocv:function:: void gpu::HOGDescriptor::getDescriptors(const GpuMat& img, Size win_stride, GpuMat& descriptors, int descr_format=DESCR_FORMAT_COL_BY_COL)

   :param img: Source image. See  :ocv:func:`gpu::HOGDescriptor::detect`  for type limitations.

   :param win_stride: Window stride. It must be a multiple of block stride.

   :param descriptors: 2D array of descriptors.

   :param descr_format: Descriptor storage format:

        * **DESCR_FORMAT_ROW_BY_ROW** - Row-major order.

        * **DESCR_FORMAT_COL_BY_COL** - Column-major order.

The function is mainly used to learn the classifier.



gpu::CascadeClassifier_GPU
--------------------------
.. ocv:class:: gpu::CascadeClassifier_GPU

Cascade classifier class used for object detection. Supports HAAR and LBP cascades. ::

    class CV_EXPORTS CascadeClassifier_GPU
    {
    public:
            CascadeClassifier_GPU();
            CascadeClassifier_GPU(const string& filename);
            ~CascadeClassifier_GPU();

            bool empty() const;
            bool load(const string& filename);
            void release();

            /* Returns number of detected objects */
            int detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, double scaleFactor=1.2, int minNeighbors=4, Size minSize=Size());
            int detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize = Size(), double scaleFactor = 1.1, int minNeighbors = 4);

            /* Finds only the largest object. Special mode if training is required.*/
            bool findLargestObject;

            /* Draws rectangles in input image */
            bool visualizeInPlace;

            Size getClassifierSize() const;
    };

.. note::

   * A cascade classifier example can be found at opencv_source_code/samples/gpu/cascadeclassifier.cpp
   * A Nvidea API specific cascade classifier example can be found at opencv_source_code/samples/gpu/cascadeclassifier_nvidia_api.cpp

gpu::CascadeClassifier_GPU::CascadeClassifier_GPU
-----------------------------------------------------
Loads the classifier from a file. Cascade type is detected automatically by constructor parameter.

.. ocv:function:: gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string& filename)

    :param filename: Name of the file from which the classifier is loaded. Only the old ``haar`` classifier (trained by the ``haar`` training application) and NVIDIA's ``nvbin`` are supported for HAAR and only new type of OpenCV XML cascade supported for LBP.



gpu::CascadeClassifier_GPU::empty
-------------------------------------
Checks whether the classifier is loaded or not.

.. ocv:function:: bool gpu::CascadeClassifier_GPU::empty() const



gpu::CascadeClassifier_GPU::load
------------------------------------
Loads the classifier from a file. The previous content is destroyed.

.. ocv:function:: bool gpu::CascadeClassifier_GPU::load(const string& filename)

    :param filename: Name of the file from which the classifier is loaded. Only the old ``haar`` classifiers (trained by the ``haar`` training application) and NVIDIA's ``nvbin`` are supported for HAAR and only new type of OpenCV XML cascade supported for LBP. The working haar classifiers can be found under ``data\haarcascades_GPU\``.


gpu::CascadeClassifier_GPU::release
---------------------------------------
Destroys the loaded classifier.

.. ocv:function:: void gpu::CascadeClassifier_GPU::release()



gpu::CascadeClassifier_GPU::detectMultiScale
------------------------------------------------
Detects objects of different sizes in the input image.

.. ocv:function:: int gpu::CascadeClassifier_GPU::detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, double scaleFactor=1.2, int minNeighbors=4, Size minSize=Size())

.. ocv:function:: int gpu::CascadeClassifier_GPU::detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize = Size(), double scaleFactor = 1.1, int minNeighbors = 4)

    :param image: Matrix of type  ``CV_8U``  containing an image where objects should be detected.

    :param objectsBuf: Buffer to store detected objects (rectangles). If it is empty, it is allocated with the default size. If not empty, the function searches not more than N objects, where ``N = sizeof(objectsBufer's data)/sizeof(cv::Rect)``.

    :param maxObjectSize: Maximum possible object size. Objects larger than that are ignored. Used for second signature and supported only for LBP cascades.

    :param scaleFactor:  Parameter specifying how much the image size is reduced at each image scale.

    :param minNeighbors: Parameter specifying how many neighbors each candidate rectangle should have to retain it.

    :param minSize: Minimum possible object size. Objects smaller than that are ignored.

The detected objects are returned as a list of rectangles.

The function returns the number of detected objects, so you can retrieve them as in the following example: ::

    gpu::CascadeClassifier_GPU cascade_gpu(...);

    Mat image_cpu = imread(...)
    GpuMat image_gpu(image_cpu);

    GpuMat objbuf;
    int detections_number = cascade_gpu.detectMultiScale( image_gpu,
              objbuf, 1.2, minNeighbors);

    Mat obj_host;
    // download only detected number of rectangles
    objbuf.colRange(0, detections_number).download(obj_host);

    Rect* faces = obj_host.ptr<Rect>();
    for(int i = 0; i < detections_num; ++i)
       cv::rectangle(image_cpu, faces[i], Scalar(255));

    imshow("Faces", image_cpu);


.. seealso:: :ocv:func:`CascadeClassifier::detectMultiScale`



.. [Dalal2005] Navneet Dalal and Bill Triggs. *Histogram of oriented gradients for human detection*. 2005.