ImathFun.h 5.76 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// *       Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// *       Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// *       Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////



#ifndef INCLUDED_IMATHFUN_H
#define INCLUDED_IMATHFUN_H

//-----------------------------------------------------------------------------
//
//	Miscellaneous utility functions
//
//-----------------------------------------------------------------------------

#include "ImathLimits.h"
#include "ImathInt64.h"

namespace Imath {

template <class T>
inline T
abs (T a)
{
    return (a > T(0)) ? a : -a;
}


template <class T>
inline int
sign (T a)
{
    return (a > T(0))? 1 : ((a < T(0)) ? -1 : 0);
}


template <class T, class Q>
inline T
lerp (T a, T b, Q t)
{
    return (T) (a * (1 - t) + b * t);
}


template <class T, class Q>
inline T
ulerp (T a, T b, Q t)
{
    return (T) ((a > b)? (a - (a - b) * t): (a + (b - a) * t));
}


template <class T>
inline T
lerpfactor(T m, T a, T b)
{
    //
    // Return how far m is between a and b, that is return t such that
    // if:
    //     t = lerpfactor(m, a, b);
    // then:
    //     m = lerp(a, b, t);
    //
    // If a==b, return 0.
    //

    T d = b - a;
    T n = m - a;

    if (abs(d) > T(1) || abs(n) < limits<T>::max() * abs(d))
    return n / d;

    return T(0);
}


template <class T>
inline T
clamp (T a, T l, T h)
{
    return (a < l)? l : ((a > h)? h : a);
}


template <class T>
inline int
cmp (T a, T b)
{
    return Imath::sign (a - b);
}


template <class T>
inline int
cmpt (T a, T b, T t)
{
    return (Imath::abs (a - b) <= t)? 0 : cmp (a, b);
}


template <class T>
inline bool
iszero (T a, T t)
{
    return (Imath::abs (a) <= t) ? 1 : 0;
}


template <class T1, class T2, class T3>
inline bool
equal (T1 a, T2 b, T3 t)
{
    return Imath::abs (a - b) <= t;
}

template <class T>
inline int
floor (T x)
{
    return (x >= 0)? int (x): -(int (-x) + (-x > int (-x)));
}


template <class T>
inline int
ceil (T x)
{
    return -floor (-x);
}

template <class T>
inline int
trunc (T x)
{
    return (x >= 0) ? int(x) : -int(-x);
}


//
// Integer division and remainder where the
// remainder of x/y has the same sign as x:
//
//	divs(x,y) == (abs(x) / abs(y)) * (sign(x) * sign(y))
//	mods(x,y) == x - y * divs(x,y)
//

inline int
divs (int x, int y)
{
    return (x >= 0)? ((y >= 0)?  ( x / y): -( x / -y)):
             ((y >= 0)? -(-x / y):  (-x / -y));
}


inline int
mods (int x, int y)
{
    return (x >= 0)? ((y >= 0)?  ( x % y):  ( x % -y)):
             ((y >= 0)? -(-x % y): -(-x % -y));
}


//
// Integer division and remainder where the
// remainder of x/y is always positive:
//
//	divp(x,y) == floor (double(x) / double (y))
//	modp(x,y) == x - y * divp(x,y)
//

inline int
divp (int x, int y)
{
    return (x >= 0)? ((y >= 0)?  (     x  / y): -(      x  / -y)):
             ((y >= 0)? -((y-1-x) / y):  ((-y-1-x) / -y));
}


inline int
modp (int x, int y)
{
    return x - y * divp (x, y);
}

//----------------------------------------------------------
// Successor and predecessor for floating-point numbers:
//
// succf(f)     returns float(f+e), where e is the smallest
//              positive number such that float(f+e) != f.
//
// predf(f)     returns float(f-e), where e is the smallest
//              positive number such that float(f-e) != f.
//
// succd(d)     returns double(d+e), where e is the smallest
//              positive number such that double(d+e) != d.
//
// predd(d)     returns double(d-e), where e is the smallest
//              positive number such that double(d-e) != d.
//
// Exceptions:  If the input value is an infinity or a nan,
//              succf(), predf(), succd(), and predd() all
//              return the input value without changing it.
//
//----------------------------------------------------------

float succf (float f);
float predf (float f);

double succd (double d);
double predd (double d);

//
// Return true if the number is not a NaN or Infinity.
//

inline bool
finitef (float f)
{
    union {float f; int i;} u;
    u.f = f;

    return (u.i & 0x7f800000) != 0x7f800000;
}

inline bool
finited (double d)
{
    union {double d; Int64 i;} u;
    u.d = d;

    return (u.i & 0x7ff0000000000000LL) != 0x7ff0000000000000LL;
}


} // namespace Imath

#endif