// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // Sample of using Halide backend in OpenCV deep learning module. // Based on caffe_googlenet.cpp. #include <opencv2/dnn.hpp> #include <opencv2/imgproc.hpp> #include <opencv2/highgui.hpp> using namespace cv; using namespace cv::dnn; #include <fstream> #include <iostream> #include <cstdlib> /* Find best class for the blob (i. e. class with maximal probability) */ static void getMaxClass(const Mat &probBlob, int *classId, double *classProb) { Mat probMat = probBlob.reshape(1, 1); //reshape the blob to 1x1000 matrix Point classNumber; minMaxLoc(probMat, NULL, classProb, NULL, &classNumber); *classId = classNumber.x; } static std::vector<std::string> readClassNames(const char *filename = "synset_words.txt") { std::vector<std::string> classNames; std::ifstream fp(filename); if (!fp.is_open()) { std::cerr << "File with classes labels not found: " << filename << std::endl; exit(-1); } std::string name; while (!fp.eof()) { std::getline(fp, name); if (name.length()) classNames.push_back( name.substr(name.find(' ')+1) ); } fp.close(); return classNames; } int main(int argc, char **argv) { std::string modelTxt = "train_val.prototxt"; std::string modelBin = "squeezenet_v1.1.caffemodel"; std::string imageFile = (argc > 1) ? argv[1] : "space_shuttle.jpg"; //! [Read and initialize network] Net net = dnn::readNetFromCaffe(modelTxt, modelBin); //! [Read and initialize network] //! [Check that network was read successfully] if (net.empty()) { std::cerr << "Can't load network by using the following files: " << std::endl; std::cerr << "prototxt: " << modelTxt << std::endl; std::cerr << "caffemodel: " << modelBin << std::endl; std::cerr << "SqueezeNet v1.1 can be downloaded from:" << std::endl; std::cerr << "https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1" << std::endl; exit(-1); } //! [Check that network was read successfully] //! [Prepare blob] Mat img = imread(imageFile); if (img.empty()) { std::cerr << "Can't read image from the file: " << imageFile << std::endl; exit(-1); } if (img.channels() != 3) { std::cerr << "Image " << imageFile << " isn't 3-channel" << std::endl; exit(-1); } resize(img, img, Size(227, 227)); // SqueezeNet v1.1 predict class by 3x227x227 input image. Mat inputBlob = blobFromImage(img, 1.0, Size(), Scalar(), false); // Convert Mat to 4-dimensional batch. //! [Prepare blob] //! [Set input blob] net.setInput(inputBlob); // Set the network input. //! [Set input blob] //! [Enable Halide backend] net.setPreferableBackend(DNN_BACKEND_HALIDE); // Tell engine to use Halide where it possible. //! [Enable Halide backend] //! [Make forward pass] Mat prob = net.forward("prob"); // Compute output. //! [Make forward pass] //! [Determine the best class] int classId; double classProb; getMaxClass(prob, &classId, &classProb); // Find the best class. //! [Determine the best class] //! [Print results] std::vector<std::string> classNames = readClassNames(); std::cout << "Best class: #" << classId << " '" << classNames.at(classId) << "'" << std::endl; std::cout << "Probability: " << classProb * 100 << "%" << std::endl; //! [Print results] return 0; } //main