/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" namespace cv { template<typename T, int shift> struct FixPtCast { typedef int type1; typedef T rtype; rtype operator ()(type1 arg) const { return (T)((arg + (1 << (shift-1))) >> shift); } }; template<typename T, int shift> struct FltCast { typedef T type1; typedef T rtype; rtype operator ()(type1 arg) const { return arg*(T)(1./(1 << shift)); } }; template<typename T1, typename T2> struct NoVec { int operator()(T1**, T2*, int, int) const { return 0; } }; #if CV_SSE2 struct PyrDownVec_32s8u { int operator()(int** src, uchar* dst, int, int width) const { if( !checkHardwareSupport(CV_CPU_SSE2) ) return 0; int x = 0; const int *row0 = src[0], *row1 = src[1], *row2 = src[2], *row3 = src[3], *row4 = src[4]; __m128i delta = _mm_set1_epi16(128); for( ; x <= width - 16; x += 16 ) { __m128i r0, r1, r2, r3, r4, t0, t1; r0 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row0 + x)), _mm_load_si128((const __m128i*)(row0 + x + 4))); r1 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row1 + x)), _mm_load_si128((const __m128i*)(row1 + x + 4))); r2 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row2 + x)), _mm_load_si128((const __m128i*)(row2 + x + 4))); r3 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row3 + x)), _mm_load_si128((const __m128i*)(row3 + x + 4))); r4 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row4 + x)), _mm_load_si128((const __m128i*)(row4 + x + 4))); r0 = _mm_add_epi16(r0, r4); r1 = _mm_add_epi16(_mm_add_epi16(r1, r3), r2); r0 = _mm_add_epi16(r0, _mm_add_epi16(r2, r2)); t0 = _mm_add_epi16(r0, _mm_slli_epi16(r1, 2)); r0 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row0 + x + 8)), _mm_load_si128((const __m128i*)(row0 + x + 12))); r1 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row1 + x + 8)), _mm_load_si128((const __m128i*)(row1 + x + 12))); r2 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row2 + x + 8)), _mm_load_si128((const __m128i*)(row2 + x + 12))); r3 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row3 + x + 8)), _mm_load_si128((const __m128i*)(row3 + x + 12))); r4 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row4 + x + 8)), _mm_load_si128((const __m128i*)(row4 + x + 12))); r0 = _mm_add_epi16(r0, r4); r1 = _mm_add_epi16(_mm_add_epi16(r1, r3), r2); r0 = _mm_add_epi16(r0, _mm_add_epi16(r2, r2)); t1 = _mm_add_epi16(r0, _mm_slli_epi16(r1, 2)); t0 = _mm_srli_epi16(_mm_add_epi16(t0, delta), 8); t1 = _mm_srli_epi16(_mm_add_epi16(t1, delta), 8); _mm_storeu_si128((__m128i*)(dst + x), _mm_packus_epi16(t0, t1)); } for( ; x <= width - 4; x += 4 ) { __m128i r0, r1, r2, r3, r4, z = _mm_setzero_si128(); r0 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row0 + x)), z); r1 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row1 + x)), z); r2 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row2 + x)), z); r3 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row3 + x)), z); r4 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row4 + x)), z); r0 = _mm_add_epi16(r0, r4); r1 = _mm_add_epi16(_mm_add_epi16(r1, r3), r2); r0 = _mm_add_epi16(r0, _mm_add_epi16(r2, r2)); r0 = _mm_add_epi16(r0, _mm_slli_epi16(r1, 2)); r0 = _mm_srli_epi16(_mm_add_epi16(r0, delta), 8); *(int*)(dst + x) = _mm_cvtsi128_si32(_mm_packus_epi16(r0, r0)); } return x; } }; struct PyrDownVec_32f { int operator()(float** src, float* dst, int, int width) const { if( !checkHardwareSupport(CV_CPU_SSE) ) return 0; int x = 0; const float *row0 = src[0], *row1 = src[1], *row2 = src[2], *row3 = src[3], *row4 = src[4]; __m128 _4 = _mm_set1_ps(4.f), _scale = _mm_set1_ps(1.f/256); for( ; x <= width - 8; x += 8 ) { __m128 r0, r1, r2, r3, r4, t0, t1; r0 = _mm_load_ps(row0 + x); r1 = _mm_load_ps(row1 + x); r2 = _mm_load_ps(row2 + x); r3 = _mm_load_ps(row3 + x); r4 = _mm_load_ps(row4 + x); r0 = _mm_add_ps(r0, r4); r1 = _mm_add_ps(_mm_add_ps(r1, r3), r2); r0 = _mm_add_ps(r0, _mm_add_ps(r2, r2)); t0 = _mm_add_ps(r0, _mm_mul_ps(r1, _4)); r0 = _mm_load_ps(row0 + x + 4); r1 = _mm_load_ps(row1 + x + 4); r2 = _mm_load_ps(row2 + x + 4); r3 = _mm_load_ps(row3 + x + 4); r4 = _mm_load_ps(row4 + x + 4); r0 = _mm_add_ps(r0, r4); r1 = _mm_add_ps(_mm_add_ps(r1, r3), r2); r0 = _mm_add_ps(r0, _mm_add_ps(r2, r2)); t1 = _mm_add_ps(r0, _mm_mul_ps(r1, _4)); t0 = _mm_mul_ps(t0, _scale); t1 = _mm_mul_ps(t1, _scale); _mm_storeu_ps(dst + x, t0); _mm_storeu_ps(dst + x + 4, t1); } return x; } }; #else typedef NoVec<int, uchar> PyrDownVec_32s8u; typedef NoVec<float, float> PyrDownVec_32f; #endif template<class CastOp, class VecOp> void pyrDown_( const Mat& _src, Mat& _dst, int borderType ) { const int PD_SZ = 5; typedef typename CastOp::type1 WT; typedef typename CastOp::rtype T; CV_Assert( !_src.empty() ); Size ssize = _src.size(), dsize = _dst.size(); int cn = _src.channels(); int bufstep = (int)alignSize(dsize.width*cn, 16); AutoBuffer<WT> _buf(bufstep*PD_SZ + 16); WT* buf = alignPtr((WT*)_buf, 16); int tabL[CV_CN_MAX*(PD_SZ+2)], tabR[CV_CN_MAX*(PD_SZ+2)]; AutoBuffer<int> _tabM(dsize.width*cn); int* tabM = _tabM; WT* rows[PD_SZ]; CastOp castOp; VecOp vecOp; CV_Assert( std::abs(dsize.width*2 - ssize.width) <= 2 && std::abs(dsize.height*2 - ssize.height) <= 2 ); int k, x, sy0 = -PD_SZ/2, sy = sy0, width0 = std::min((ssize.width-PD_SZ/2-1)/2 + 1, dsize.width); for( x = 0; x <= PD_SZ+1; x++ ) { int sx0 = borderInterpolate(x - PD_SZ/2, ssize.width, borderType)*cn; int sx1 = borderInterpolate(x + width0*2 - PD_SZ/2, ssize.width, borderType)*cn; for( k = 0; k < cn; k++ ) { tabL[x*cn + k] = sx0 + k; tabR[x*cn + k] = sx1 + k; } } ssize.width *= cn; dsize.width *= cn; width0 *= cn; for( x = 0; x < dsize.width; x++ ) tabM[x] = (x/cn)*2*cn + x % cn; for( int y = 0; y < dsize.height; y++ ) { T* dst = (T*)(_dst.data + _dst.step*y); WT *row0, *row1, *row2, *row3, *row4; // fill the ring buffer (horizontal convolution and decimation) for( ; sy <= y*2 + 2; sy++ ) { WT* row = buf + ((sy - sy0) % PD_SZ)*bufstep; int _sy = borderInterpolate(sy, ssize.height, borderType); const T* src = (const T*)(_src.data + _src.step*_sy); int limit = cn; const int* tab = tabL; for( x = 0;;) { for( ; x < limit; x++ ) { row[x] = src[tab[x+cn*2]]*6 + (src[tab[x+cn]] + src[tab[x+cn*3]])*4 + src[tab[x]] + src[tab[x+cn*4]]; } if( x == dsize.width ) break; if( cn == 1 ) { for( ; x < width0; x++ ) row[x] = src[x*2]*6 + (src[x*2 - 1] + src[x*2 + 1])*4 + src[x*2 - 2] + src[x*2 + 2]; } else if( cn == 3 ) { for( ; x < width0; x += 3 ) { const T* s = src + x*2; WT t0 = s[0]*6 + (s[-3] + s[3])*4 + s[-6] + s[6]; WT t1 = s[1]*6 + (s[-2] + s[4])*4 + s[-5] + s[7]; WT t2 = s[2]*6 + (s[-1] + s[5])*4 + s[-4] + s[8]; row[x] = t0; row[x+1] = t1; row[x+2] = t2; } } else if( cn == 4 ) { for( ; x < width0; x += 4 ) { const T* s = src + x*2; WT t0 = s[0]*6 + (s[-4] + s[4])*4 + s[-8] + s[8]; WT t1 = s[1]*6 + (s[-3] + s[5])*4 + s[-7] + s[9]; row[x] = t0; row[x+1] = t1; t0 = s[2]*6 + (s[-2] + s[6])*4 + s[-6] + s[10]; t1 = s[3]*6 + (s[-1] + s[7])*4 + s[-5] + s[11]; row[x+2] = t0; row[x+3] = t1; } } else { for( ; x < width0; x++ ) { int sx = tabM[x]; row[x] = src[sx]*6 + (src[sx - cn] + src[sx + cn])*4 + src[sx - cn*2] + src[sx + cn*2]; } } limit = dsize.width; tab = tabR - x; } } // do vertical convolution and decimation and write the result to the destination image for( k = 0; k < PD_SZ; k++ ) rows[k] = buf + ((y*2 - PD_SZ/2 + k - sy0) % PD_SZ)*bufstep; row0 = rows[0]; row1 = rows[1]; row2 = rows[2]; row3 = rows[3]; row4 = rows[4]; x = vecOp(rows, dst, (int)_dst.step, dsize.width); for( ; x < dsize.width; x++ ) dst[x] = castOp(row2[x]*6 + (row1[x] + row3[x])*4 + row0[x] + row4[x]); } } template<class CastOp, class VecOp> void pyrUp_( const Mat& _src, Mat& _dst, int) { const int PU_SZ = 3; typedef typename CastOp::type1 WT; typedef typename CastOp::rtype T; Size ssize = _src.size(), dsize = _dst.size(); int cn = _src.channels(); int bufstep = (int)alignSize((dsize.width+1)*cn, 16); AutoBuffer<WT> _buf(bufstep*PU_SZ + 16); WT* buf = alignPtr((WT*)_buf, 16); AutoBuffer<int> _dtab(ssize.width*cn); int* dtab = _dtab; WT* rows[PU_SZ]; CastOp castOp; VecOp vecOp; CV_Assert( std::abs(dsize.width - ssize.width*2) == dsize.width % 2 && std::abs(dsize.height - ssize.height*2) == dsize.height % 2); int k, x, sy0 = -PU_SZ/2, sy = sy0; ssize.width *= cn; dsize.width *= cn; for( x = 0; x < ssize.width; x++ ) dtab[x] = (x/cn)*2*cn + x % cn; for( int y = 0; y < ssize.height; y++ ) { T* dst0 = (T*)(_dst.data + _dst.step*y*2); T* dst1 = (T*)(_dst.data + _dst.step*(y*2+1)); WT *row0, *row1, *row2; if( y*2+1 >= dsize.height ) dst1 = dst0; // fill the ring buffer (horizontal convolution and decimation) for( ; sy <= y + 1; sy++ ) { WT* row = buf + ((sy - sy0) % PU_SZ)*bufstep; int _sy = borderInterpolate(sy*2, ssize.height*2, BORDER_REFLECT_101)/2; const T* src = (const T*)(_src.data + _src.step*_sy); if( ssize.width == cn ) { for( x = 0; x < cn; x++ ) row[x] = row[x + cn] = src[x]*8; continue; } for( x = 0; x < cn; x++ ) { int dx = dtab[x]; WT t0 = src[x]*6 + src[x + cn]*2; WT t1 = (src[x] + src[x + cn])*4; row[dx] = t0; row[dx + cn] = t1; dx = dtab[ssize.width - cn + x]; int sx = ssize.width - cn + x; t0 = src[sx - cn] + src[sx]*7; t1 = src[sx]*8; row[dx] = t0; row[dx + cn] = t1; if (dsize.width > ssize.width*2) { row[(_dst.cols-1) + x] = row[dx + cn]; } } for( x = cn; x < ssize.width - cn; x++ ) { int dx = dtab[x]; WT t0 = src[x-cn] + src[x]*6 + src[x+cn]; WT t1 = (src[x] + src[x+cn])*4; row[dx] = t0; row[dx+cn] = t1; } } // do vertical convolution and decimation and write the result to the destination image for( k = 0; k < PU_SZ; k++ ) rows[k] = buf + ((y - PU_SZ/2 + k - sy0) % PU_SZ)*bufstep; row0 = rows[0]; row1 = rows[1]; row2 = rows[2]; x = vecOp(rows, dst0, (int)_dst.step, dsize.width); for( ; x < dsize.width; x++ ) { T t1 = castOp((row1[x] + row2[x])*4); T t0 = castOp(row0[x] + row1[x]*6 + row2[x]); dst1[x] = t1; dst0[x] = t0; } } if (dsize.height > ssize.height*2) { T* dst0 = _dst.ptr<T>(ssize.height*2-2); T* dst2 = _dst.ptr<T>(ssize.height*2); for(x = 0; x < dsize.width ; x++ ) { dst2[x] = dst0[x]; } } } typedef void (*PyrFunc)(const Mat&, Mat&, int); } void cv::pyrDown( InputArray _src, OutputArray _dst, const Size& _dsz, int borderType ) { CV_Assert(borderType != BORDER_CONSTANT); Mat src = _src.getMat(); Size dsz = _dsz == Size() ? Size((src.cols + 1)/2, (src.rows + 1)/2) : _dsz; _dst.create( dsz, src.type() ); Mat dst = _dst.getMat(); #ifdef HAVE_TEGRA_OPTIMIZATION if(borderType == BORDER_DEFAULT && tegra::pyrDown(src, dst)) return; #endif int depth = src.depth(); PyrFunc func = 0; if( depth == CV_8U ) func = pyrDown_<FixPtCast<uchar, 8>, PyrDownVec_32s8u>; else if( depth == CV_16S ) func = pyrDown_<FixPtCast<short, 8>, NoVec<int, short> >; else if( depth == CV_16U ) func = pyrDown_<FixPtCast<ushort, 8>, NoVec<int, ushort> >; else if( depth == CV_32F ) func = pyrDown_<FltCast<float, 8>, PyrDownVec_32f>; else if( depth == CV_64F ) func = pyrDown_<FltCast<double, 8>, NoVec<double, double> >; else CV_Error( CV_StsUnsupportedFormat, "" ); func( src, dst, borderType ); } void cv::pyrUp( InputArray _src, OutputArray _dst, const Size& _dsz, int borderType ) { CV_Assert(borderType == BORDER_DEFAULT); Mat src = _src.getMat(); Size dsz = _dsz == Size() ? Size(src.cols*2, src.rows*2) : _dsz; _dst.create( dsz, src.type() ); Mat dst = _dst.getMat(); #ifdef HAVE_TEGRA_OPTIMIZATION if(borderType == BORDER_DEFAULT && tegra::pyrUp(src, dst)) return; #endif int depth = src.depth(); PyrFunc func = 0; if( depth == CV_8U ) func = pyrUp_<FixPtCast<uchar, 6>, NoVec<int, uchar> >; else if( depth == CV_16S ) func = pyrUp_<FixPtCast<short, 6>, NoVec<int, short> >; else if( depth == CV_16U ) func = pyrUp_<FixPtCast<ushort, 6>, NoVec<int, ushort> >; else if( depth == CV_32F ) func = pyrUp_<FltCast<float, 6>, NoVec<float, float> >; else if( depth == CV_64F ) func = pyrUp_<FltCast<double, 6>, NoVec<double, double> >; else CV_Error( CV_StsUnsupportedFormat, "" ); func( src, dst, borderType ); } void cv::buildPyramid( InputArray _src, OutputArrayOfArrays _dst, int maxlevel, int borderType ) { CV_Assert(borderType != BORDER_CONSTANT); Mat src = _src.getMat(); _dst.create( maxlevel + 1, 1, 0 ); _dst.getMatRef(0) = src; for( int i = 1; i <= maxlevel; i++ ) pyrDown( _dst.getMatRef(i-1), _dst.getMatRef(i), Size(), borderType ); } CV_IMPL void cvPyrDown( const void* srcarr, void* dstarr, int _filter ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); CV_Assert( _filter == CV_GAUSSIAN_5x5 && src.type() == dst.type()); cv::pyrDown( src, dst, dst.size() ); } CV_IMPL void cvPyrUp( const void* srcarr, void* dstarr, int _filter ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); CV_Assert( _filter == CV_GAUSSIAN_5x5 && src.type() == dst.type()); cv::pyrUp( src, dst, dst.size() ); } CV_IMPL void cvReleasePyramid( CvMat*** _pyramid, int extra_layers ) { if( !_pyramid ) CV_Error( CV_StsNullPtr, "" ); if( *_pyramid ) for( int i = 0; i <= extra_layers; i++ ) cvReleaseMat( &(*_pyramid)[i] ); cvFree( _pyramid ); } CV_IMPL CvMat** cvCreatePyramid( const CvArr* srcarr, int extra_layers, double rate, const CvSize* layer_sizes, CvArr* bufarr, int calc, int filter ) { const float eps = 0.1f; uchar* ptr = 0; CvMat stub, *src = cvGetMat( srcarr, &stub ); if( extra_layers < 0 ) CV_Error( CV_StsOutOfRange, "The number of extra layers must be non negative" ); int i, layer_step, elem_size = CV_ELEM_SIZE(src->type); CvSize layer_size, size = cvGetMatSize(src); if( bufarr ) { CvMat bstub, *buf; int bufsize = 0; buf = cvGetMat( bufarr, &bstub ); bufsize = buf->rows*buf->cols*CV_ELEM_SIZE(buf->type); layer_size = size; for( i = 1; i <= extra_layers; i++ ) { if( !layer_sizes ) { layer_size.width = cvRound(layer_size.width*rate+eps); layer_size.height = cvRound(layer_size.height*rate+eps); } else layer_size = layer_sizes[i-1]; layer_step = layer_size.width*elem_size; bufsize -= layer_step*layer_size.height; } if( bufsize < 0 ) CV_Error( CV_StsOutOfRange, "The buffer is too small to fit the pyramid" ); ptr = buf->data.ptr; } CvMat** pyramid = (CvMat**)cvAlloc( (extra_layers+1)*sizeof(pyramid[0]) ); memset( pyramid, 0, (extra_layers+1)*sizeof(pyramid[0]) ); pyramid[0] = cvCreateMatHeader( size.height, size.width, src->type ); cvSetData( pyramid[0], src->data.ptr, src->step ); layer_size = size; for( i = 1; i <= extra_layers; i++ ) { if( !layer_sizes ) { layer_size.width = cvRound(layer_size.width*rate + eps); layer_size.height = cvRound(layer_size.height*rate + eps); } else layer_size = layer_sizes[i]; if( bufarr ) { pyramid[i] = cvCreateMatHeader( layer_size.height, layer_size.width, src->type ); layer_step = layer_size.width*elem_size; cvSetData( pyramid[i], ptr, layer_step ); ptr += layer_step*layer_size.height; } else pyramid[i] = cvCreateMat( layer_size.height, layer_size.width, src->type ); if( calc ) cvPyrDown( pyramid[i-1], pyramid[i], filter ); //cvResize( pyramid[i-1], pyramid[i], CV_INTER_LINEAR ); } return pyramid; } /* End of file. */