/////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas // Digital Ltd. LLC // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Industrial Light & Magic nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /////////////////////////////////////////////////////////////////////////// #ifndef INCLUDED_IMATHPLANE_H #define INCLUDED_IMATHPLANE_H //---------------------------------------------------------------------- // // template class Plane3 // // The Imath::Plane3<> class represents a half space, so the // normal may point either towards or away from origin. The // plane P can be represented by Imath::Plane3 as either p or -p // corresponding to the two half-spaces on either side of the // plane. Any function which computes a distance will return // either negative or positive values for the distance indicating // which half-space the point is in. Note that reflection, and // intersection functions will operate as expected. // //---------------------------------------------------------------------- #include "ImathVec.h" #include "ImathLine.h" namespace Imath { template <class T> class Plane3 { public: Vec3<T> normal; T distance; Plane3() {} Plane3(const Vec3<T> &normal, T distance); Plane3(const Vec3<T> &point, const Vec3<T> &normal); Plane3(const Vec3<T> &point1, const Vec3<T> &point2, const Vec3<T> &point3); //---------------------- // Various set methods //---------------------- void set(const Vec3<T> &normal, T distance); void set(const Vec3<T> &point, const Vec3<T> &normal); void set(const Vec3<T> &point1, const Vec3<T> &point2, const Vec3<T> &point3 ); //---------------------- // Utilities //---------------------- bool intersect(const Line3<T> &line, Vec3<T> &intersection) const; bool intersectT(const Line3<T> &line, T ¶meter) const; T distanceTo(const Vec3<T> &) const; Vec3<T> reflectPoint(const Vec3<T> &) const; Vec3<T> reflectVector(const Vec3<T> &) const; }; //-------------------- // Convenient typedefs //-------------------- typedef Plane3<float> Plane3f; typedef Plane3<double> Plane3d; //--------------- // Implementation //--------------- template <class T> inline Plane3<T>::Plane3(const Vec3<T> &p0, const Vec3<T> &p1, const Vec3<T> &p2) { set(p0,p1,p2); } template <class T> inline Plane3<T>::Plane3(const Vec3<T> &n, T d) { set(n, d); } template <class T> inline Plane3<T>::Plane3(const Vec3<T> &p, const Vec3<T> &n) { set(p, n); } template <class T> inline void Plane3<T>::set(const Vec3<T>& point1, const Vec3<T>& point2, const Vec3<T>& point3) { normal = (point2 - point1) % (point3 - point1); normal.normalize(); distance = normal ^ point1; } template <class T> inline void Plane3<T>::set(const Vec3<T>& point, const Vec3<T>& n) { normal = n; normal.normalize(); distance = normal ^ point; } template <class T> inline void Plane3<T>::set(const Vec3<T>& n, T d) { normal = n; normal.normalize(); distance = d; } template <class T> inline T Plane3<T>::distanceTo(const Vec3<T> &point) const { return (point ^ normal) - distance; } template <class T> inline Vec3<T> Plane3<T>::reflectPoint(const Vec3<T> &point) const { return normal * distanceTo(point) * -2.0 + point; } template <class T> inline Vec3<T> Plane3<T>::reflectVector(const Vec3<T> &v) const { return normal * (normal ^ v) * 2.0 - v; } template <class T> inline bool Plane3<T>::intersect(const Line3<T>& line, Vec3<T>& point) const { T d = normal ^ line.dir; if ( d == 0.0 ) return false; T t = - ((normal ^ line.pos) - distance) / d; point = line(t); return true; } template <class T> inline bool Plane3<T>::intersectT(const Line3<T>& line, T &t) const { T d = normal ^ line.dir; if ( d == 0.0 ) return false; t = - ((normal ^ line.pos) - distance) / d; return true; } template<class T> std::ostream &operator<< (std::ostream &o, const Plane3<T> &plane) { return o << "(" << plane.normal << ", " << plane.distance << ")"; } template<class T> Plane3<T> operator* (const Plane3<T> &plane, const Matrix44<T> &M) { // T // -1 // Could also compute M but that would suck. // Vec3<T> dir1 = Vec3<T> (1, 0, 0) % plane.normal; T dir1Len = dir1 ^ dir1; Vec3<T> tmp = Vec3<T> (0, 1, 0) % plane.normal; T tmpLen = tmp ^ tmp; if (tmpLen > dir1Len) { dir1 = tmp; dir1Len = tmpLen; } tmp = Vec3<T> (0, 0, 1) % plane.normal; tmpLen = tmp ^ tmp; if (tmpLen > dir1Len) { dir1 = tmp; } Vec3<T> dir2 = dir1 % plane.normal; Vec3<T> point = plane.distance * plane.normal; return Plane3<T> ( point * M, (point + dir2) * M, (point + dir1) * M ); } template<class T> Plane3<T> operator- (const Plane3<T> &plane) { return Plane3<T>(-plane.normal,-plane.distance); } } // namespace Imath #endif