#include "opencv2/objdetect/objdetect.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/ocl/ocl.hpp" #include <iostream> #include <stdio.h> #if defined(_MSC_VER) && (_MSC_VER >= 1700) # include <thread> #endif using namespace std; using namespace cv; #define LOOP_NUM 10 #define MAX_THREADS 10 ///////////////////////////single-threading faces detecting/////////////////////////////// const static Scalar colors[] = { CV_RGB(0,0,255), CV_RGB(0,128,255), CV_RGB(0,255,255), CV_RGB(0,255,0), CV_RGB(255,128,0), CV_RGB(255,255,0), CV_RGB(255,0,0), CV_RGB(255,0,255) } ; int64 work_begin[MAX_THREADS] = {0}; int64 work_total[MAX_THREADS] = {0}; string inputName, outputName, cascadeName; static void workBegin(int i = 0) { work_begin[i] = getTickCount(); } static void workEnd(int i = 0) { work_total[i] += (getTickCount() - work_begin[i]); } static double getTotalTime(int i = 0) { return work_total[i] /getTickFrequency() * 1000.; } static void detect( Mat& img, vector<Rect>& faces, ocl::OclCascadeClassifier& cascade, double scale, bool calTime); static void detectCPU( Mat& img, vector<Rect>& faces, CascadeClassifier& cascade, double scale, bool calTime); static void Draw(Mat& img, vector<Rect>& faces, double scale); // This function test if gpu_rst matches cpu_rst. // If the two vectors are not equal, it will return the difference in vector size // Else if will return (total diff of each cpu and gpu rects covered pixels)/(total cpu rects covered pixels) double checkRectSimilarity(Size sz, vector<Rect>& cpu_rst, vector<Rect>& gpu_rst); static int facedetect_one_thread(bool useCPU, double scale ) { CvCapture* capture = 0; Mat frame, frameCopy, image; ocl::OclCascadeClassifier cascade; CascadeClassifier cpu_cascade; if( !cascade.load( cascadeName ) || !cpu_cascade.load(cascadeName) ) { cout << "ERROR: Could not load classifier cascade: " << cascadeName << endl; return EXIT_FAILURE; } if( inputName.empty() ) { capture = cvCaptureFromCAM(0); if(!capture) cout << "Capture from CAM 0 didn't work" << endl; } else { image = imread( inputName, CV_LOAD_IMAGE_COLOR ); if( image.empty() ) { capture = cvCaptureFromAVI( inputName.c_str() ); if(!capture){ cout << "Capture from AVI didn't work" << endl; return EXIT_FAILURE; } } } if( capture ) { cout << "In capture ..." << endl; for(;;) { IplImage* iplImg = cvQueryFrame( capture ); frame = iplImg; vector<Rect> faces; if( frame.empty() ) break; if( iplImg->origin == IPL_ORIGIN_TL ) frame.copyTo( frameCopy ); else flip( frame, frameCopy, 0 ); if(useCPU) detectCPU(frameCopy, faces, cpu_cascade, scale, false); else detect(frameCopy, faces, cascade, scale, false); Draw(frameCopy, faces, scale); if( waitKey( 10 ) >= 0 ) break; } cvReleaseCapture( &capture ); } else { cout << "In image read " << image.size() << endl; vector<Rect> faces; vector<Rect> ref_rst; double accuracy = 0.; cout << "loops: "; for(int i = 0; i <= LOOP_NUM; i++) { cout << i << ", "; if(useCPU) detectCPU(image, faces, cpu_cascade, scale, i!=0); else { detect(image, faces, cascade, scale, i!=0); if(i == 0) { detectCPU(image, ref_rst, cpu_cascade, scale, false); accuracy = checkRectSimilarity(image.size(), ref_rst, faces); } } } cout << "done!" << endl; if (useCPU) cout << "average CPU time (noCamera) : "; else cout << "average GPU time (noCamera) : "; cout << getTotalTime() / LOOP_NUM << " ms" << endl; cout << "accuracy value: " << accuracy <<endl; Draw(image, faces, scale); waitKey(0); } cvDestroyWindow("result"); std::cout<< "single-threaded sample has finished" <<std::endl; return 0; } ///////////////////////////////////////detectfaces with multithreading//////////////////////////////////////////// #if defined(_MSC_VER) && (_MSC_VER >= 1700) static void detectFaces(std::string fileName, int threadNum) { ocl::OclCascadeClassifier cascade; if(!cascade.load(cascadeName)) { std::cout << "ERROR: Could not load classifier cascade: " << cascadeName << std::endl; return; } Mat img = imread(fileName, CV_LOAD_IMAGE_COLOR); if (img.empty()) { std::cout << '[' << threadNum << "] " << "can't open file " + fileName <<std::endl; return; } ocl::oclMat d_img; d_img.upload(img); std::vector<Rect> oclfaces; std::thread::id tid = std::this_thread::get_id(); std::cout << '[' << threadNum << "] " << "ThreadID = " << tid << ", CommandQueue = " << *(void**)ocl::getClCommandQueuePtr() << endl; for(int i = 0; i <= LOOP_NUM; i++) { if(i>0) workBegin(threadNum); cascade.detectMultiScale(d_img, oclfaces, 1.1, 3, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30), Size(0, 0)); if(i>0) workEnd(threadNum); } std::cout << '[' << threadNum << "] " << "Average time = " << getTotalTime(threadNum) / LOOP_NUM << " ms" << endl; for(unsigned int i = 0; i<oclfaces.size(); i++) rectangle(img, Point(oclfaces[i].x, oclfaces[i].y), Point(oclfaces[i].x + oclfaces[i].width, oclfaces[i].y + oclfaces[i].height), colors[i%8], 3); std::string::size_type pos = outputName.rfind('.'); std::string strTid = std::to_string(_threadid); if( !outputName.empty() ) { if(pos == std::string::npos) { std::cout << "Invalid output file name: " << outputName << std::endl; } else { std::string outputNameTid = outputName.substr(0, pos) + "_" + strTid + outputName.substr(pos); imwrite(outputNameTid, img); } } imshow(strTid, img); waitKey(0); } static void facedetect_multithreading(int nthreads) { int thread_number = MAX_THREADS < nthreads ? MAX_THREADS : nthreads; std::vector<std::thread> threads; for(int i = 0; i<thread_number; i++) threads.push_back(std::thread(detectFaces, inputName, i)); for(int i = 0; i<thread_number; i++) threads[i].join(); } #endif int main( int argc, const char** argv ) { const char* keys = "{ h | help | false | print help message }" "{ i | input | | specify input image }" "{ t | template | haarcascade_frontalface_alt.xml |" " specify template file path }" "{ c | scale | 1.0 | scale image }" "{ s | use_cpu | false | use cpu or gpu to process the image }" "{ o | output | | specify output image save path(only works when input is images) }" "{ n | thread_num | 1 | set number of threads >= 1 }"; CommandLineParser cmd(argc, argv, keys); if (cmd.get<bool>("help")) { cout << "Usage : facedetect [options]" << endl; cout << "Available options:" << endl; cmd.printParams(); return EXIT_SUCCESS; } bool useCPU = cmd.get<bool>("s"); inputName = cmd.get<string>("i"); outputName = cmd.get<string>("o"); cascadeName = cmd.get<string>("t"); double scale = cmd.get<double>("c"); int n = cmd.get<int>("n"); if(n > 1) { #if defined(_MSC_VER) && (_MSC_VER >= 1700) std::cout<<"multi-threaded sample is running" <<std::endl; facedetect_multithreading(n); std::cout<<"multi-threaded sample has finished" <<std::endl; return 0; #else std::cout << "std::thread is not supported, running a single-threaded version" << std::endl; #endif } if (n<0) std::cout<<"incorrect number of threads:" << n << ", running a single-threaded version" <<std::endl; else std::cout<<"single-threaded sample is running" <<std::endl; return facedetect_one_thread(useCPU, scale); } void detect( Mat& img, vector<Rect>& faces, ocl::OclCascadeClassifier& cascade, double scale, bool calTime) { ocl::oclMat image(img); ocl::oclMat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 ); if(calTime) workBegin(); ocl::cvtColor( image, gray, CV_BGR2GRAY ); ocl::resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR ); ocl::equalizeHist( smallImg, smallImg ); cascade.detectMultiScale( smallImg, faces, 1.1, 3, 0 |CV_HAAR_SCALE_IMAGE , Size(30,30), Size(0, 0) ); if(calTime) workEnd(); } void detectCPU( Mat& img, vector<Rect>& faces, CascadeClassifier& cascade, double scale, bool calTime) { if(calTime) workBegin(); Mat cpu_gray, cpu_smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 ); cvtColor(img, cpu_gray, CV_BGR2GRAY); resize(cpu_gray, cpu_smallImg, cpu_smallImg.size(), 0, 0, INTER_LINEAR); equalizeHist(cpu_smallImg, cpu_smallImg); cascade.detectMultiScale(cpu_smallImg, faces, 1.1, 3, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30), Size(0, 0)); if(calTime) workEnd(); } void Draw(Mat& img, vector<Rect>& faces, double scale) { int i = 0; for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ ) { Point center; Scalar color = colors[i%8]; int radius; center.x = cvRound((r->x + r->width*0.5)*scale); center.y = cvRound((r->y + r->height*0.5)*scale); radius = cvRound((r->width + r->height)*0.25*scale); circle( img, center, radius, color, 3, 8, 0 ); } if( !outputName.empty() ) imwrite( outputName, img ); if( abs(scale-1.0)>.001 ) { resize(img, img, Size((int)(img.cols/scale), (int)(img.rows/scale))); } imshow( "result", img ); } double checkRectSimilarity(Size sz, vector<Rect>& ob1, vector<Rect>& ob2) { double final_test_result = 0.0; size_t sz1 = ob1.size(); size_t sz2 = ob2.size(); if(sz1 != sz2) { return sz1 > sz2 ? (double)(sz1 - sz2) : (double)(sz2 - sz1); } else { if(sz1==0 && sz2==0) return 0; Mat cpu_result(sz, CV_8UC1); cpu_result.setTo(0); for(vector<Rect>::const_iterator r = ob1.begin(); r != ob1.end(); r++) { Mat cpu_result_roi(cpu_result, *r); cpu_result_roi.setTo(1); cpu_result.copyTo(cpu_result); } int cpu_area = countNonZero(cpu_result > 0); Mat gpu_result(sz, CV_8UC1); gpu_result.setTo(0); for(vector<Rect>::const_iterator r2 = ob2.begin(); r2 != ob2.end(); r2++) { cv::Mat gpu_result_roi(gpu_result, *r2); gpu_result_roi.setTo(1); gpu_result.copyTo(gpu_result); } Mat result_; multiply(cpu_result, gpu_result, result_); int result = countNonZero(result_ > 0); if(cpu_area!=0 && result!=0) final_test_result = 1.0 - (double)result/(double)cpu_area; else if(cpu_area==0 && result!=0) final_test_result = -1; } return final_test_result; }