/** * @file AKAZEFeatures.cpp * @brief Main class for detecting and describing binary features in an * accelerated nonlinear scale space * @date Sep 15, 2013 * @author Pablo F. Alcantarilla, Jesus Nuevo */ #include "../precomp.hpp" #include "AKAZEFeatures.h" #include "fed.h" #include "nldiffusion_functions.h" #include "utils.h" #include <iostream> // Namespaces namespace cv { using namespace std; /* ************************************************************************* */ /** * @brief AKAZEFeatures constructor with input options * @param options AKAZEFeatures configuration options * @note This constructor allocates memory for the nonlinear scale space */ AKAZEFeatures::AKAZEFeatures(const AKAZEOptions& options) : options_(options) { ncycles_ = 0; reordering_ = true; if (options_.descriptor_size > 0 && options_.descriptor >= AKAZE::DESCRIPTOR_MLDB_UPRIGHT) { generateDescriptorSubsample(descriptorSamples_, descriptorBits_, options_.descriptor_size, options_.descriptor_pattern_size, options_.descriptor_channels); } Allocate_Memory_Evolution(); } /* ************************************************************************* */ /** * @brief This method allocates the memory for the nonlinear diffusion evolution */ void AKAZEFeatures::Allocate_Memory_Evolution(void) { float rfactor = 0.0f; int level_height = 0, level_width = 0; // Allocate the dimension of the matrices for the evolution for (int i = 0, power = 1; i <= options_.omax - 1; i++, power *= 2) { rfactor = 1.0f / power; level_height = (int)(options_.img_height*rfactor); level_width = (int)(options_.img_width*rfactor); // Smallest possible octave and allow one scale if the image is small if ((level_width < 80 || level_height < 40) && i != 0) { options_.omax = i; break; } for (int j = 0; j < options_.nsublevels; j++) { TEvolution step; step.Lx = Mat::zeros(level_height, level_width, CV_32F); step.Ly = Mat::zeros(level_height, level_width, CV_32F); step.Lxx = Mat::zeros(level_height, level_width, CV_32F); step.Lxy = Mat::zeros(level_height, level_width, CV_32F); step.Lyy = Mat::zeros(level_height, level_width, CV_32F); step.Lt = Mat::zeros(level_height, level_width, CV_32F); step.Ldet = Mat::zeros(level_height, level_width, CV_32F); step.Lsmooth = Mat::zeros(level_height, level_width, CV_32F); step.esigma = options_.soffset*pow(2.f, (float)(j) / (float)(options_.nsublevels) + i); step.sigma_size = fRound(step.esigma); step.etime = 0.5f*(step.esigma*step.esigma); step.octave = i; step.sublevel = j; evolution_.push_back(step); } } // Allocate memory for the number of cycles and time steps for (size_t i = 1; i < evolution_.size(); i++) { int naux = 0; vector<float> tau; float ttime = 0.0f; ttime = evolution_[i].etime - evolution_[i - 1].etime; naux = fed_tau_by_process_time(ttime, 1, 0.25f, reordering_, tau); nsteps_.push_back(naux); tsteps_.push_back(tau); ncycles_++; } } /* ************************************************************************* */ /** * @brief This method creates the nonlinear scale space for a given image * @param img Input image for which the nonlinear scale space needs to be created * @return 0 if the nonlinear scale space was created successfully, -1 otherwise */ int AKAZEFeatures::Create_Nonlinear_Scale_Space(const Mat& img) { CV_Assert(evolution_.size() > 0); // Copy the original image to the first level of the evolution img.copyTo(evolution_[0].Lt); gaussian_2D_convolution(evolution_[0].Lt, evolution_[0].Lt, 0, 0, options_.soffset); evolution_[0].Lt.copyTo(evolution_[0].Lsmooth); // Allocate memory for the flow and step images Mat Lflow = Mat::zeros(evolution_[0].Lt.rows, evolution_[0].Lt.cols, CV_32F); Mat Lstep = Mat::zeros(evolution_[0].Lt.rows, evolution_[0].Lt.cols, CV_32F); // First compute the kcontrast factor options_.kcontrast = compute_k_percentile(img, options_.kcontrast_percentile, 1.0f, options_.kcontrast_nbins, 0, 0); // Now generate the rest of evolution levels for (size_t i = 1; i < evolution_.size(); i++) { if (evolution_[i].octave > evolution_[i - 1].octave) { halfsample_image(evolution_[i - 1].Lt, evolution_[i].Lt); options_.kcontrast = options_.kcontrast*0.75f; // Allocate memory for the resized flow and step images Lflow = Mat::zeros(evolution_[i].Lt.rows, evolution_[i].Lt.cols, CV_32F); Lstep = Mat::zeros(evolution_[i].Lt.rows, evolution_[i].Lt.cols, CV_32F); } else { evolution_[i - 1].Lt.copyTo(evolution_[i].Lt); } gaussian_2D_convolution(evolution_[i].Lt, evolution_[i].Lsmooth, 0, 0, 1.0f); // Compute the Gaussian derivatives Lx and Ly image_derivatives_scharr(evolution_[i].Lsmooth, evolution_[i].Lx, 1, 0); image_derivatives_scharr(evolution_[i].Lsmooth, evolution_[i].Ly, 0, 1); // Compute the conductivity equation switch (options_.diffusivity) { case KAZE::DIFF_PM_G1: pm_g1(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast); break; case KAZE::DIFF_PM_G2: pm_g2(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast); break; case KAZE::DIFF_WEICKERT: weickert_diffusivity(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast); break; case KAZE::DIFF_CHARBONNIER: charbonnier_diffusivity(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast); break; default: CV_Error(options_.diffusivity, "Diffusivity is not supported"); break; } // Perform FED n inner steps for (int j = 0; j < nsteps_[i - 1]; j++) { nld_step_scalar(evolution_[i].Lt, Lflow, Lstep, tsteps_[i - 1][j]); } } return 0; } /* ************************************************************************* */ /** * @brief This method selects interesting keypoints through the nonlinear scale space * @param kpts Vector of detected keypoints */ void AKAZEFeatures::Feature_Detection(std::vector<KeyPoint>& kpts) { kpts.clear(); Compute_Determinant_Hessian_Response(); Find_Scale_Space_Extrema(kpts); Do_Subpixel_Refinement(kpts); } /* ************************************************************************* */ class MultiscaleDerivativesAKAZEInvoker : public ParallelLoopBody { public: explicit MultiscaleDerivativesAKAZEInvoker(std::vector<TEvolution>& ev, const AKAZEOptions& opt) : evolution_(&ev) , options_(opt) { } void operator()(const Range& range) const { std::vector<TEvolution>& evolution = *evolution_; for (int i = range.start; i < range.end; i++) { float ratio = (float)fastpow(2, evolution[i].octave); int sigma_size_ = fRound(evolution[i].esigma * options_.derivative_factor / ratio); compute_scharr_derivatives(evolution[i].Lsmooth, evolution[i].Lx, 1, 0, sigma_size_); compute_scharr_derivatives(evolution[i].Lsmooth, evolution[i].Ly, 0, 1, sigma_size_); compute_scharr_derivatives(evolution[i].Lx, evolution[i].Lxx, 1, 0, sigma_size_); compute_scharr_derivatives(evolution[i].Ly, evolution[i].Lyy, 0, 1, sigma_size_); compute_scharr_derivatives(evolution[i].Lx, evolution[i].Lxy, 0, 1, sigma_size_); evolution[i].Lx = evolution[i].Lx*((sigma_size_)); evolution[i].Ly = evolution[i].Ly*((sigma_size_)); evolution[i].Lxx = evolution[i].Lxx*((sigma_size_)*(sigma_size_)); evolution[i].Lxy = evolution[i].Lxy*((sigma_size_)*(sigma_size_)); evolution[i].Lyy = evolution[i].Lyy*((sigma_size_)*(sigma_size_)); } } private: std::vector<TEvolution>* evolution_; AKAZEOptions options_; }; /* ************************************************************************* */ /** * @brief This method computes the multiscale derivatives for the nonlinear scale space */ void AKAZEFeatures::Compute_Multiscale_Derivatives(void) { parallel_for_(Range(0, (int)evolution_.size()), MultiscaleDerivativesAKAZEInvoker(evolution_, options_)); } /* ************************************************************************* */ /** * @brief This method computes the feature detector response for the nonlinear scale space * @note We use the Hessian determinant as the feature detector response */ void AKAZEFeatures::Compute_Determinant_Hessian_Response(void) { // Firstly compute the multiscale derivatives Compute_Multiscale_Derivatives(); for (size_t i = 0; i < evolution_.size(); i++) { for (int ix = 0; ix < evolution_[i].Ldet.rows; ix++) { for (int jx = 0; jx < evolution_[i].Ldet.cols; jx++) { float lxx = *(evolution_[i].Lxx.ptr<float>(ix)+jx); float lxy = *(evolution_[i].Lxy.ptr<float>(ix)+jx); float lyy = *(evolution_[i].Lyy.ptr<float>(ix)+jx); *(evolution_[i].Ldet.ptr<float>(ix)+jx) = (lxx*lyy - lxy*lxy); } } } } /* ************************************************************************* */ /** * @brief This method finds extrema in the nonlinear scale space * @param kpts Vector of detected keypoints */ void AKAZEFeatures::Find_Scale_Space_Extrema(std::vector<KeyPoint>& kpts) { float value = 0.0; float dist = 0.0, ratio = 0.0, smax = 0.0; int npoints = 0, id_repeated = 0; int sigma_size_ = 0, left_x = 0, right_x = 0, up_y = 0, down_y = 0; bool is_extremum = false, is_repeated = false, is_out = false; KeyPoint point; vector<KeyPoint> kpts_aux; // Set maximum size if (options_.descriptor == AKAZE::DESCRIPTOR_MLDB_UPRIGHT || options_.descriptor == AKAZE::DESCRIPTOR_MLDB) { smax = 10.0f*sqrtf(2.0f); } else if (options_.descriptor == AKAZE::DESCRIPTOR_KAZE_UPRIGHT || options_.descriptor == AKAZE::DESCRIPTOR_KAZE) { smax = 12.0f*sqrtf(2.0f); } for (size_t i = 0; i < evolution_.size(); i++) { float* prev = evolution_[i].Ldet.ptr<float>(0); float* curr = evolution_[i].Ldet.ptr<float>(1); for (int ix = 1; ix < evolution_[i].Ldet.rows - 1; ix++) { float* next = evolution_[i].Ldet.ptr<float>(ix + 1); for (int jx = 1; jx < evolution_[i].Ldet.cols - 1; jx++) { is_extremum = false; is_repeated = false; is_out = false; value = *(evolution_[i].Ldet.ptr<float>(ix)+jx); // Filter the points with the detector threshold if (value > options_.dthreshold && value >= options_.min_dthreshold && value > curr[jx-1] && value > curr[jx+1] && value > prev[jx-1] && value > prev[jx] && value > prev[jx+1] && value > next[jx-1] && value > next[jx] && value > next[jx+1]) { is_extremum = true; point.response = fabs(value); point.size = evolution_[i].esigma*options_.derivative_factor; point.octave = (int)evolution_[i].octave; point.class_id = (int)i; ratio = (float)fastpow(2, point.octave); sigma_size_ = fRound(point.size / ratio); point.pt.x = static_cast<float>(jx); point.pt.y = static_cast<float>(ix); // Compare response with the same and lower scale for (size_t ik = 0; ik < kpts_aux.size(); ik++) { if ((point.class_id - 1) == kpts_aux[ik].class_id || point.class_id == kpts_aux[ik].class_id) { float distx = point.pt.x*ratio - kpts_aux[ik].pt.x; float disty = point.pt.y*ratio - kpts_aux[ik].pt.y; dist = distx * distx + disty * disty; if (dist <= point.size * point.size) { if (point.response > kpts_aux[ik].response) { id_repeated = (int)ik; is_repeated = true; } else { is_extremum = false; } break; } } } // Check out of bounds if (is_extremum == true) { // Check that the point is under the image limits for the descriptor computation left_x = fRound(point.pt.x - smax*sigma_size_) - 1; right_x = fRound(point.pt.x + smax*sigma_size_) + 1; up_y = fRound(point.pt.y - smax*sigma_size_) - 1; down_y = fRound(point.pt.y + smax*sigma_size_) + 1; if (left_x < 0 || right_x >= evolution_[i].Ldet.cols || up_y < 0 || down_y >= evolution_[i].Ldet.rows) { is_out = true; } if (is_out == false) { if (is_repeated == false) { point.pt.x *= ratio; point.pt.y *= ratio; kpts_aux.push_back(point); npoints++; } else { point.pt.x *= ratio; point.pt.y *= ratio; kpts_aux[id_repeated] = point; } } // if is_out } //if is_extremum } } // for jx prev = curr; curr = next; } // for ix } // for i // Now filter points with the upper scale level for (size_t i = 0; i < kpts_aux.size(); i++) { is_repeated = false; const KeyPoint& pt = kpts_aux[i]; for (size_t j = i + 1; j < kpts_aux.size(); j++) { // Compare response with the upper scale if ((pt.class_id + 1) == kpts_aux[j].class_id) { float distx = pt.pt.x - kpts_aux[j].pt.x; float disty = pt.pt.y - kpts_aux[j].pt.y; dist = distx * distx + disty * disty; if (dist <= pt.size * pt.size) { if (pt.response < kpts_aux[j].response) { is_repeated = true; break; } } } } if (is_repeated == false) kpts.push_back(pt); } } /* ************************************************************************* */ /** * @brief This method performs subpixel refinement of the detected keypoints * @param kpts Vector of detected keypoints */ void AKAZEFeatures::Do_Subpixel_Refinement(std::vector<KeyPoint>& kpts) { float Dx = 0.0, Dy = 0.0, ratio = 0.0; float Dxx = 0.0, Dyy = 0.0, Dxy = 0.0; int x = 0, y = 0; Matx22f A(0, 0, 0, 0); Vec2f b(0, 0); Vec2f dst(0, 0); for (size_t i = 0; i < kpts.size(); i++) { ratio = (float)fastpow(2, kpts[i].octave); x = fRound(kpts[i].pt.x / ratio); y = fRound(kpts[i].pt.y / ratio); // Compute the gradient Dx = (0.5f)*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x + 1) - *(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x - 1)); Dy = (0.5f)*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y + 1) + x) - *(evolution_[kpts[i].class_id].Ldet.ptr<float>(y - 1) + x)); // Compute the Hessian Dxx = (*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x + 1) + *(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x - 1) - 2.0f*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x))); Dyy = (*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y + 1) + x) + *(evolution_[kpts[i].class_id].Ldet.ptr<float>(y - 1) + x) - 2.0f*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x))); Dxy = (0.25f)*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y + 1) + x + 1) + (*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y - 1) + x - 1))) - (0.25f)*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y - 1) + x + 1) + (*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y + 1) + x - 1))); // Solve the linear system A(0, 0) = Dxx; A(1, 1) = Dyy; A(0, 1) = A(1, 0) = Dxy; b(0) = -Dx; b(1) = -Dy; solve(A, b, dst, DECOMP_LU); if (fabs(dst(0)) <= 1.0f && fabs(dst(1)) <= 1.0f) { kpts[i].pt.x = x + dst(0); kpts[i].pt.y = y + dst(1); int power = fastpow(2, evolution_[kpts[i].class_id].octave); kpts[i].pt.x *= power; kpts[i].pt.y *= power; kpts[i].angle = 0.0; // In OpenCV the size of a keypoint its the diameter kpts[i].size *= 2.0f; } // Delete the point since its not stable else { kpts.erase(kpts.begin() + i); i--; } } } /* ************************************************************************* */ class SURF_Descriptor_Upright_64_Invoker : public ParallelLoopBody { public: SURF_Descriptor_Upright_64_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution) : keypoints_(&kpts) , descriptors_(&desc) , evolution_(&evolution) { } void operator() (const Range& range) const { for (int i = range.start; i < range.end; i++) { Get_SURF_Descriptor_Upright_64((*keypoints_)[i], descriptors_->ptr<float>(i)); } } void Get_SURF_Descriptor_Upright_64(const KeyPoint& kpt, float* desc) const; private: std::vector<KeyPoint>* keypoints_; Mat* descriptors_; std::vector<TEvolution>* evolution_; }; class SURF_Descriptor_64_Invoker : public ParallelLoopBody { public: SURF_Descriptor_64_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution) : keypoints_(&kpts) , descriptors_(&desc) , evolution_(&evolution) { } void operator()(const Range& range) const { for (int i = range.start; i < range.end; i++) { AKAZEFeatures::Compute_Main_Orientation((*keypoints_)[i], *evolution_); Get_SURF_Descriptor_64((*keypoints_)[i], descriptors_->ptr<float>(i)); } } void Get_SURF_Descriptor_64(const KeyPoint& kpt, float* desc) const; private: std::vector<KeyPoint>* keypoints_; Mat* descriptors_; std::vector<TEvolution>* evolution_; }; class MSURF_Upright_Descriptor_64_Invoker : public ParallelLoopBody { public: MSURF_Upright_Descriptor_64_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution) : keypoints_(&kpts) , descriptors_(&desc) , evolution_(&evolution) { } void operator()(const Range& range) const { for (int i = range.start; i < range.end; i++) { Get_MSURF_Upright_Descriptor_64((*keypoints_)[i], descriptors_->ptr<float>(i)); } } void Get_MSURF_Upright_Descriptor_64(const KeyPoint& kpt, float* desc) const; private: std::vector<KeyPoint>* keypoints_; Mat* descriptors_; std::vector<TEvolution>* evolution_; }; class MSURF_Descriptor_64_Invoker : public ParallelLoopBody { public: MSURF_Descriptor_64_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution) : keypoints_(&kpts) , descriptors_(&desc) , evolution_(&evolution) { } void operator() (const Range& range) const { for (int i = range.start; i < range.end; i++) { AKAZEFeatures::Compute_Main_Orientation((*keypoints_)[i], *evolution_); Get_MSURF_Descriptor_64((*keypoints_)[i], descriptors_->ptr<float>(i)); } } void Get_MSURF_Descriptor_64(const KeyPoint& kpt, float* desc) const; private: std::vector<KeyPoint>* keypoints_; Mat* descriptors_; std::vector<TEvolution>* evolution_; }; class Upright_MLDB_Full_Descriptor_Invoker : public ParallelLoopBody { public: Upright_MLDB_Full_Descriptor_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution, AKAZEOptions& options) : keypoints_(&kpts) , descriptors_(&desc) , evolution_(&evolution) , options_(&options) { } void operator() (const Range& range) const { for (int i = range.start; i < range.end; i++) { Get_Upright_MLDB_Full_Descriptor((*keypoints_)[i], descriptors_->ptr<unsigned char>(i)); } } void Get_Upright_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char* desc) const; private: std::vector<KeyPoint>* keypoints_; Mat* descriptors_; std::vector<TEvolution>* evolution_; AKAZEOptions* options_; }; class Upright_MLDB_Descriptor_Subset_Invoker : public ParallelLoopBody { public: Upright_MLDB_Descriptor_Subset_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution, AKAZEOptions& options, Mat descriptorSamples, Mat descriptorBits) : keypoints_(&kpts) , descriptors_(&desc) , evolution_(&evolution) , options_(&options) , descriptorSamples_(descriptorSamples) , descriptorBits_(descriptorBits) { } void operator() (const Range& range) const { for (int i = range.start; i < range.end; i++) { Get_Upright_MLDB_Descriptor_Subset((*keypoints_)[i], descriptors_->ptr<unsigned char>(i)); } } void Get_Upright_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char* desc) const; private: std::vector<KeyPoint>* keypoints_; Mat* descriptors_; std::vector<TEvolution>* evolution_; AKAZEOptions* options_; Mat descriptorSamples_; // List of positions in the grids to sample LDB bits from. Mat descriptorBits_; }; class MLDB_Full_Descriptor_Invoker : public ParallelLoopBody { public: MLDB_Full_Descriptor_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution, AKAZEOptions& options) : keypoints_(&kpts) , descriptors_(&desc) , evolution_(&evolution) , options_(&options) { } void operator() (const Range& range) const { for (int i = range.start; i < range.end; i++) { AKAZEFeatures::Compute_Main_Orientation((*keypoints_)[i], *evolution_); Get_MLDB_Full_Descriptor((*keypoints_)[i], descriptors_->ptr<unsigned char>(i)); } } void Get_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char* desc) const; void MLDB_Fill_Values(float* values, int sample_step, int level, float xf, float yf, float co, float si, float scale) const; void MLDB_Binary_Comparisons(float* values, unsigned char* desc, int count, int& dpos) const; private: std::vector<KeyPoint>* keypoints_; Mat* descriptors_; std::vector<TEvolution>* evolution_; AKAZEOptions* options_; }; class MLDB_Descriptor_Subset_Invoker : public ParallelLoopBody { public: MLDB_Descriptor_Subset_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution, AKAZEOptions& options, Mat descriptorSamples, Mat descriptorBits) : keypoints_(&kpts) , descriptors_(&desc) , evolution_(&evolution) , options_(&options) , descriptorSamples_(descriptorSamples) , descriptorBits_(descriptorBits) { } void operator() (const Range& range) const { for (int i = range.start; i < range.end; i++) { AKAZEFeatures::Compute_Main_Orientation((*keypoints_)[i], *evolution_); Get_MLDB_Descriptor_Subset((*keypoints_)[i], descriptors_->ptr<unsigned char>(i)); } } void Get_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char* desc) const; private: std::vector<KeyPoint>* keypoints_; Mat* descriptors_; std::vector<TEvolution>* evolution_; AKAZEOptions* options_; Mat descriptorSamples_; // List of positions in the grids to sample LDB bits from. Mat descriptorBits_; }; /** * @brief This method computes the set of descriptors through the nonlinear scale space * @param kpts Vector of detected keypoints * @param desc Matrix to store the descriptors */ void AKAZEFeatures::Compute_Descriptors(std::vector<KeyPoint>& kpts, Mat& desc) { for(size_t i = 0; i < kpts.size(); i++) { CV_Assert(0 <= kpts[i].class_id && kpts[i].class_id < static_cast<int>(evolution_.size())); } // Allocate memory for the matrix with the descriptors if (options_.descriptor < AKAZE::DESCRIPTOR_MLDB_UPRIGHT) { desc = Mat::zeros((int)kpts.size(), 64, CV_32FC1); } else { // We use the full length binary descriptor -> 486 bits if (options_.descriptor_size == 0) { int t = (6 + 36 + 120)*options_.descriptor_channels; desc = Mat::zeros((int)kpts.size(), (int)ceil(t / 8.), CV_8UC1); } else { // We use the random bit selection length binary descriptor desc = Mat::zeros((int)kpts.size(), (int)ceil(options_.descriptor_size / 8.), CV_8UC1); } } switch (options_.descriptor) { case AKAZE::DESCRIPTOR_KAZE_UPRIGHT: // Upright descriptors, not invariant to rotation { parallel_for_(Range(0, (int)kpts.size()), MSURF_Upright_Descriptor_64_Invoker(kpts, desc, evolution_)); } break; case AKAZE::DESCRIPTOR_KAZE: { parallel_for_(Range(0, (int)kpts.size()), MSURF_Descriptor_64_Invoker(kpts, desc, evolution_)); } break; case AKAZE::DESCRIPTOR_MLDB_UPRIGHT: // Upright descriptors, not invariant to rotation { if (options_.descriptor_size == 0) parallel_for_(Range(0, (int)kpts.size()), Upright_MLDB_Full_Descriptor_Invoker(kpts, desc, evolution_, options_)); else parallel_for_(Range(0, (int)kpts.size()), Upright_MLDB_Descriptor_Subset_Invoker(kpts, desc, evolution_, options_, descriptorSamples_, descriptorBits_)); } break; case AKAZE::DESCRIPTOR_MLDB: { if (options_.descriptor_size == 0) parallel_for_(Range(0, (int)kpts.size()), MLDB_Full_Descriptor_Invoker(kpts, desc, evolution_, options_)); else parallel_for_(Range(0, (int)kpts.size()), MLDB_Descriptor_Subset_Invoker(kpts, desc, evolution_, options_, descriptorSamples_, descriptorBits_)); } break; } } /* ************************************************************************* */ /** * @brief This method computes the main orientation for a given keypoint * @param kpt Input keypoint * @note The orientation is computed using a similar approach as described in the * original SURF method. See Bay et al., Speeded Up Robust Features, ECCV 2006 */ void AKAZEFeatures::Compute_Main_Orientation(KeyPoint& kpt, const std::vector<TEvolution>& evolution_) { /* ************************************************************************* */ /// Lookup table for 2d gaussian (sigma = 2.5) where (0,0) is top left and (6,6) is bottom right static const float gauss25[7][7] = { { 0.02546481f, 0.02350698f, 0.01849125f, 0.01239505f, 0.00708017f, 0.00344629f, 0.00142946f }, { 0.02350698f, 0.02169968f, 0.01706957f, 0.01144208f, 0.00653582f, 0.00318132f, 0.00131956f }, { 0.01849125f, 0.01706957f, 0.01342740f, 0.00900066f, 0.00514126f, 0.00250252f, 0.00103800f }, { 0.01239505f, 0.01144208f, 0.00900066f, 0.00603332f, 0.00344629f, 0.00167749f, 0.00069579f }, { 0.00708017f, 0.00653582f, 0.00514126f, 0.00344629f, 0.00196855f, 0.00095820f, 0.00039744f }, { 0.00344629f, 0.00318132f, 0.00250252f, 0.00167749f, 0.00095820f, 0.00046640f, 0.00019346f }, { 0.00142946f, 0.00131956f, 0.00103800f, 0.00069579f, 0.00039744f, 0.00019346f, 0.00008024f } }; int ix = 0, iy = 0, idx = 0, s = 0, level = 0; float xf = 0.0, yf = 0.0, gweight = 0.0, ratio = 0.0; const int ang_size = 109; float resX[ang_size], resY[ang_size], Ang[ang_size]; const int id[] = { 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6 }; // Variables for computing the dominant direction float sumX = 0.0, sumY = 0.0, max = 0.0, ang1 = 0.0, ang2 = 0.0; // Get the information from the keypoint level = kpt.class_id; ratio = (float)(1 << evolution_[level].octave); s = fRound(0.5f*kpt.size / ratio); xf = kpt.pt.x / ratio; yf = kpt.pt.y / ratio; // Calculate derivatives responses for points within radius of 6*scale for (int i = -6; i <= 6; ++i) { for (int j = -6; j <= 6; ++j) { if (i*i + j*j < 36) { iy = fRound(yf + j*s); ix = fRound(xf + i*s); gweight = gauss25[id[i + 6]][id[j + 6]]; resX[idx] = gweight*(*(evolution_[level].Lx.ptr<float>(iy)+ix)); resY[idx] = gweight*(*(evolution_[level].Ly.ptr<float>(iy)+ix)); ++idx; } } } hal::fastAtan2(resY, resX, Ang, ang_size, false); // Loop slides pi/3 window around feature point for (ang1 = 0; ang1 < (float)(2.0 * CV_PI); ang1 += 0.15f) { ang2 = (ang1 + (float)(CV_PI / 3.0) >(float)(2.0*CV_PI) ? ang1 - (float)(5.0*CV_PI / 3.0) : ang1 + (float)(CV_PI / 3.0)); sumX = sumY = 0.f; for (int k = 0; k < ang_size; ++k) { // Get angle from the x-axis of the sample point const float & ang = Ang[k]; // Determine whether the point is within the window if (ang1 < ang2 && ang1 < ang && ang < ang2) { sumX += resX[k]; sumY += resY[k]; } else if (ang2 < ang1 && ((ang > 0 && ang < ang2) || (ang > ang1 && ang < 2.0f*CV_PI))) { sumX += resX[k]; sumY += resY[k]; } } // if the vector produced from this window is longer than all // previous vectors then this forms the new dominant direction if (sumX*sumX + sumY*sumY > max) { // store largest orientation max = sumX*sumX + sumY*sumY; kpt.angle = getAngle(sumX, sumY) * 180.f / static_cast<float>(CV_PI); } } } /* ************************************************************************* */ /** * @brief This method computes the upright descriptor (not rotation invariant) of * the provided keypoint * @param kpt Input keypoint * @param desc Descriptor vector * @note Rectangular grid of 24 s x 24 s. Descriptor Length 64. The descriptor is inspired * from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching, * ECCV 2008 */ void MSURF_Upright_Descriptor_64_Invoker::Get_MSURF_Upright_Descriptor_64(const KeyPoint& kpt, float *desc) const { float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0, gauss_s1 = 0.0, gauss_s2 = 0.0; float rx = 0.0, ry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0; float sample_x = 0.0, sample_y = 0.0; int x1 = 0, y1 = 0, sample_step = 0, pattern_size = 0; int x2 = 0, y2 = 0, kx = 0, ky = 0, i = 0, j = 0, dcount = 0; float fx = 0.0, fy = 0.0, ratio = 0.0, res1 = 0.0, res2 = 0.0, res3 = 0.0, res4 = 0.0; int scale = 0, dsize = 0, level = 0; // Subregion centers for the 4x4 gaussian weighting float cx = -0.5f, cy = 0.5f; const std::vector<TEvolution>& evolution = *evolution_; // Set the descriptor size and the sample and pattern sizes dsize = 64; sample_step = 5; pattern_size = 12; // Get the information from the keypoint ratio = (float)(1 << kpt.octave); scale = fRound(0.5f*kpt.size / ratio); level = kpt.class_id; yf = kpt.pt.y / ratio; xf = kpt.pt.x / ratio; i = -8; // Calculate descriptor for this interest point // Area of size 24 s x 24 s while (i < pattern_size) { j = -8; i = i - 4; cx += 1.0f; cy = -0.5f; while (j < pattern_size) { dx = dy = mdx = mdy = 0.0; cy += 1.0f; j = j - 4; ky = i + sample_step; kx = j + sample_step; ys = yf + (ky*scale); xs = xf + (kx*scale); for (int k = i; k < i + 9; k++) { for (int l = j; l < j + 9; l++) { sample_y = k*scale + yf; sample_x = l*scale + xf; //Get the gaussian weighted x and y responses gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.50f*scale); y1 = (int)(sample_y - .5); x1 = (int)(sample_x - .5); y2 = (int)(sample_y + .5); x2 = (int)(sample_x + .5); fx = sample_x - x1; fy = sample_y - y1; res1 = *(evolution[level].Lx.ptr<float>(y1)+x1); res2 = *(evolution[level].Lx.ptr<float>(y1)+x2); res3 = *(evolution[level].Lx.ptr<float>(y2)+x1); res4 = *(evolution[level].Lx.ptr<float>(y2)+x2); rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4; res1 = *(evolution[level].Ly.ptr<float>(y1)+x1); res2 = *(evolution[level].Ly.ptr<float>(y1)+x2); res3 = *(evolution[level].Ly.ptr<float>(y2)+x1); res4 = *(evolution[level].Ly.ptr<float>(y2)+x2); ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4; rx = gauss_s1*rx; ry = gauss_s1*ry; // Sum the derivatives to the cumulative descriptor dx += rx; dy += ry; mdx += fabs(rx); mdy += fabs(ry); } } // Add the values to the descriptor vector gauss_s2 = gaussian(cx - 2.0f, cy - 2.0f, 1.5f); desc[dcount++] = dx*gauss_s2; desc[dcount++] = dy*gauss_s2; desc[dcount++] = mdx*gauss_s2; desc[dcount++] = mdy*gauss_s2; len += (dx*dx + dy*dy + mdx*mdx + mdy*mdy)*gauss_s2*gauss_s2; j += 9; } i += 9; } // convert to unit vector len = sqrt(len); for (i = 0; i < dsize; i++) { desc[i] /= len; } } /* ************************************************************************* */ /** * @brief This method computes the descriptor of the provided keypoint given the * main orientation of the keypoint * @param kpt Input keypoint * @param desc Descriptor vector * @note Rectangular grid of 24 s x 24 s. Descriptor Length 64. The descriptor is inspired * from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching, * ECCV 2008 */ void MSURF_Descriptor_64_Invoker::Get_MSURF_Descriptor_64(const KeyPoint& kpt, float *desc) const { float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0, gauss_s1 = 0.0, gauss_s2 = 0.0; float rx = 0.0, ry = 0.0, rrx = 0.0, rry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0; float sample_x = 0.0, sample_y = 0.0, co = 0.0, si = 0.0, angle = 0.0; float fx = 0.0, fy = 0.0, ratio = 0.0, res1 = 0.0, res2 = 0.0, res3 = 0.0, res4 = 0.0; int x1 = 0, y1 = 0, x2 = 0, y2 = 0, sample_step = 0, pattern_size = 0; int kx = 0, ky = 0, i = 0, j = 0, dcount = 0; int scale = 0, dsize = 0, level = 0; // Subregion centers for the 4x4 gaussian weighting float cx = -0.5f, cy = 0.5f; const std::vector<TEvolution>& evolution = *evolution_; // Set the descriptor size and the sample and pattern sizes dsize = 64; sample_step = 5; pattern_size = 12; // Get the information from the keypoint ratio = (float)(1 << kpt.octave); scale = fRound(0.5f*kpt.size / ratio); angle = (kpt.angle * static_cast<float>(CV_PI)) / 180.f; level = kpt.class_id; yf = kpt.pt.y / ratio; xf = kpt.pt.x / ratio; co = cos(angle); si = sin(angle); i = -8; // Calculate descriptor for this interest point // Area of size 24 s x 24 s while (i < pattern_size) { j = -8; i = i - 4; cx += 1.0f; cy = -0.5f; while (j < pattern_size) { dx = dy = mdx = mdy = 0.0; cy += 1.0f; j = j - 4; ky = i + sample_step; kx = j + sample_step; xs = xf + (-kx*scale*si + ky*scale*co); ys = yf + (kx*scale*co + ky*scale*si); for (int k = i; k < i + 9; ++k) { for (int l = j; l < j + 9; ++l) { // Get coords of sample point on the rotated axis sample_y = yf + (l*scale*co + k*scale*si); sample_x = xf + (-l*scale*si + k*scale*co); // Get the gaussian weighted x and y responses gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.5f*scale); y1 = fRound(sample_y - 0.5f); x1 = fRound(sample_x - 0.5f); y2 = fRound(sample_y + 0.5f); x2 = fRound(sample_x + 0.5f); fx = sample_x - x1; fy = sample_y - y1; res1 = *(evolution[level].Lx.ptr<float>(y1)+x1); res2 = *(evolution[level].Lx.ptr<float>(y1)+x2); res3 = *(evolution[level].Lx.ptr<float>(y2)+x1); res4 = *(evolution[level].Lx.ptr<float>(y2)+x2); rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4; res1 = *(evolution[level].Ly.ptr<float>(y1)+x1); res2 = *(evolution[level].Ly.ptr<float>(y1)+x2); res3 = *(evolution[level].Ly.ptr<float>(y2)+x1); res4 = *(evolution[level].Ly.ptr<float>(y2)+x2); ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4; // Get the x and y derivatives on the rotated axis rry = gauss_s1*(rx*co + ry*si); rrx = gauss_s1*(-rx*si + ry*co); // Sum the derivatives to the cumulative descriptor dx += rrx; dy += rry; mdx += fabs(rrx); mdy += fabs(rry); } } // Add the values to the descriptor vector gauss_s2 = gaussian(cx - 2.0f, cy - 2.0f, 1.5f); desc[dcount++] = dx*gauss_s2; desc[dcount++] = dy*gauss_s2; desc[dcount++] = mdx*gauss_s2; desc[dcount++] = mdy*gauss_s2; len += (dx*dx + dy*dy + mdx*mdx + mdy*mdy)*gauss_s2*gauss_s2; j += 9; } i += 9; } // convert to unit vector len = sqrt(len); for (i = 0; i < dsize; i++) { desc[i] /= len; } } /* ************************************************************************* */ /** * @brief This method computes the rupright descriptor (not rotation invariant) of * the provided keypoint * @param kpt Input keypoint * @param desc Descriptor vector */ void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char *desc) const { float di = 0.0, dx = 0.0, dy = 0.0; float ri = 0.0, rx = 0.0, ry = 0.0, xf = 0.0, yf = 0.0; float sample_x = 0.0, sample_y = 0.0, ratio = 0.0; int x1 = 0, y1 = 0, sample_step = 0, pattern_size = 0; int level = 0, nsamples = 0, scale = 0; int dcount1 = 0, dcount2 = 0; const AKAZEOptions & options = *options_; const std::vector<TEvolution>& evolution = *evolution_; // Matrices for the M-LDB descriptor Mat values_1 = Mat::zeros(4, options.descriptor_channels, CV_32FC1); Mat values_2 = Mat::zeros(9, options.descriptor_channels, CV_32FC1); Mat values_3 = Mat::zeros(16, options.descriptor_channels, CV_32FC1); // Get the information from the keypoint ratio = (float)(1 << kpt.octave); scale = fRound(0.5f*kpt.size / ratio); level = kpt.class_id; yf = kpt.pt.y / ratio; xf = kpt.pt.x / ratio; // First 2x2 grid pattern_size = options_->descriptor_pattern_size; sample_step = pattern_size; for (int i = -pattern_size; i < pattern_size; i += sample_step) { for (int j = -pattern_size; j < pattern_size; j += sample_step) { di = dx = dy = 0.0; nsamples = 0; for (int k = i; k < i + sample_step; k++) { for (int l = j; l < j + sample_step; l++) { // Get the coordinates of the sample point sample_y = yf + l*scale; sample_x = xf + k*scale; y1 = fRound(sample_y); x1 = fRound(sample_x); ri = *(evolution[level].Lt.ptr<float>(y1)+x1); rx = *(evolution[level].Lx.ptr<float>(y1)+x1); ry = *(evolution[level].Ly.ptr<float>(y1)+x1); di += ri; dx += rx; dy += ry; nsamples++; } } di /= nsamples; dx /= nsamples; dy /= nsamples; *(values_1.ptr<float>(dcount2)) = di; *(values_1.ptr<float>(dcount2)+1) = dx; *(values_1.ptr<float>(dcount2)+2) = dy; dcount2++; } } // Do binary comparison first level for (int i = 0; i < 4; i++) { for (int j = i + 1; j < 4; j++) { if (*(values_1.ptr<float>(i)) > *(values_1.ptr<float>(j))) { desc[dcount1 / 8] |= (1 << (dcount1 % 8)); } dcount1++; if (*(values_1.ptr<float>(i)+1) > *(values_1.ptr<float>(j)+1)) { desc[dcount1 / 8] |= (1 << (dcount1 % 8)); } dcount1++; if (*(values_1.ptr<float>(i)+2) > *(values_1.ptr<float>(j)+2)) { desc[dcount1 / 8] |= (1 << (dcount1 % 8)); } dcount1++; } } // Second 3x3 grid sample_step = static_cast<int>(ceil(pattern_size*2. / 3.)); dcount2 = 0; for (int i = -pattern_size; i < pattern_size; i += sample_step) { for (int j = -pattern_size; j < pattern_size; j += sample_step) { di = dx = dy = 0.0; nsamples = 0; for (int k = i; k < i + sample_step; k++) { for (int l = j; l < j + sample_step; l++) { // Get the coordinates of the sample point sample_y = yf + l*scale; sample_x = xf + k*scale; y1 = fRound(sample_y); x1 = fRound(sample_x); ri = *(evolution[level].Lt.ptr<float>(y1)+x1); rx = *(evolution[level].Lx.ptr<float>(y1)+x1); ry = *(evolution[level].Ly.ptr<float>(y1)+x1); di += ri; dx += rx; dy += ry; nsamples++; } } di /= nsamples; dx /= nsamples; dy /= nsamples; *(values_2.ptr<float>(dcount2)) = di; *(values_2.ptr<float>(dcount2)+1) = dx; *(values_2.ptr<float>(dcount2)+2) = dy; dcount2++; } } //Do binary comparison second level dcount2 = 0; for (int i = 0; i < 9; i++) { for (int j = i + 1; j < 9; j++) { if (*(values_2.ptr<float>(i)) > *(values_2.ptr<float>(j))) { desc[dcount1 / 8] |= (1 << (dcount1 % 8)); } dcount1++; if (*(values_2.ptr<float>(i)+1) > *(values_2.ptr<float>(j)+1)) { desc[dcount1 / 8] |= (1 << (dcount1 % 8)); } dcount1++; if (*(values_2.ptr<float>(i)+2) > *(values_2.ptr<float>(j)+2)) { desc[dcount1 / 8] |= (1 << (dcount1 % 8)); } dcount1++; } } // Third 4x4 grid sample_step = pattern_size / 2; dcount2 = 0; for (int i = -pattern_size; i < pattern_size; i += sample_step) { for (int j = -pattern_size; j < pattern_size; j += sample_step) { di = dx = dy = 0.0; nsamples = 0; for (int k = i; k < i + sample_step; k++) { for (int l = j; l < j + sample_step; l++) { // Get the coordinates of the sample point sample_y = yf + l*scale; sample_x = xf + k*scale; y1 = fRound(sample_y); x1 = fRound(sample_x); ri = *(evolution[level].Lt.ptr<float>(y1)+x1); rx = *(evolution[level].Lx.ptr<float>(y1)+x1); ry = *(evolution[level].Ly.ptr<float>(y1)+x1); di += ri; dx += rx; dy += ry; nsamples++; } } di /= nsamples; dx /= nsamples; dy /= nsamples; *(values_3.ptr<float>(dcount2)) = di; *(values_3.ptr<float>(dcount2)+1) = dx; *(values_3.ptr<float>(dcount2)+2) = dy; dcount2++; } } //Do binary comparison third level dcount2 = 0; for (int i = 0; i < 16; i++) { for (int j = i + 1; j < 16; j++) { if (*(values_3.ptr<float>(i)) > *(values_3.ptr<float>(j))) { desc[dcount1 / 8] |= (1 << (dcount1 % 8)); } dcount1++; if (*(values_3.ptr<float>(i)+1) > *(values_3.ptr<float>(j)+1)) { desc[dcount1 / 8] |= (1 << (dcount1 % 8)); } dcount1++; if (*(values_3.ptr<float>(i)+2) > *(values_3.ptr<float>(j)+2)) { desc[dcount1 / 8] |= (1 << (dcount1 % 8)); } dcount1++; } } } void MLDB_Full_Descriptor_Invoker::MLDB_Fill_Values(float* values, int sample_step, int level, float xf, float yf, float co, float si, float scale) const { const std::vector<TEvolution>& evolution = *evolution_; int pattern_size = options_->descriptor_pattern_size; int chan = options_->descriptor_channels; int valpos = 0; for (int i = -pattern_size; i < pattern_size; i += sample_step) { for (int j = -pattern_size; j < pattern_size; j += sample_step) { float di, dx, dy; di = dx = dy = 0.0; int nsamples = 0; for (int k = i; k < i + sample_step; k++) { for (int l = j; l < j + sample_step; l++) { float sample_y = yf + (l*co * scale + k*si*scale); float sample_x = xf + (-l*si * scale + k*co*scale); int y1 = fRound(sample_y); int x1 = fRound(sample_x); float ri = *(evolution[level].Lt.ptr<float>(y1)+x1); di += ri; if(chan > 1) { float rx = *(evolution[level].Lx.ptr<float>(y1)+x1); float ry = *(evolution[level].Ly.ptr<float>(y1)+x1); if (chan == 2) { dx += sqrtf(rx*rx + ry*ry); } else { float rry = rx*co + ry*si; float rrx = -rx*si + ry*co; dx += rrx; dy += rry; } } nsamples++; } } di /= nsamples; dx /= nsamples; dy /= nsamples; values[valpos] = di; if (chan > 1) { values[valpos + 1] = dx; } if (chan > 2) { values[valpos + 2] = dy; } valpos += chan; } } } void MLDB_Full_Descriptor_Invoker::MLDB_Binary_Comparisons(float* values, unsigned char* desc, int count, int& dpos) const { int chan = options_->descriptor_channels; int* ivalues = (int*) values; for(int i = 0; i < count * chan; i++) { ivalues[i] = CV_TOGGLE_FLT(ivalues[i]); } for(int pos = 0; pos < chan; pos++) { for (int i = 0; i < count; i++) { int ival = ivalues[chan * i + pos]; for (int j = i + 1; j < count; j++) { int res = ival > ivalues[chan * j + pos]; desc[dpos >> 3] |= (res << (dpos & 7)); dpos++; } } } } /* ************************************************************************* */ /** * @brief This method computes the descriptor of the provided keypoint given the * main orientation of the keypoint * @param kpt Input keypoint * @param desc Descriptor vector */ void MLDB_Full_Descriptor_Invoker::Get_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char *desc) const { const int max_channels = 3; CV_Assert(options_->descriptor_channels <= max_channels); float values[16*max_channels]; const double size_mult[3] = {1, 2.0/3.0, 1.0/2.0}; float ratio = (float)(1 << kpt.octave); float scale = (float)fRound(0.5f*kpt.size / ratio); float xf = kpt.pt.x / ratio; float yf = kpt.pt.y / ratio; float angle = (kpt.angle * static_cast<float>(CV_PI)) / 180.f; float co = cos(angle); float si = sin(angle); int pattern_size = options_->descriptor_pattern_size; int dpos = 0; for(int lvl = 0; lvl < 3; lvl++) { int val_count = (lvl + 2) * (lvl + 2); int sample_step = static_cast<int>(ceil(pattern_size * size_mult[lvl])); MLDB_Fill_Values(values, sample_step, kpt.class_id, xf, yf, co, si, scale); MLDB_Binary_Comparisons(values, desc, val_count, dpos); } } /* ************************************************************************* */ /** * @brief This method computes the M-LDB descriptor of the provided keypoint given the * main orientation of the keypoint. The descriptor is computed based on a subset of * the bits of the whole descriptor * @param kpt Input keypoint * @param desc Descriptor vector */ void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char *desc) const { float di = 0.f, dx = 0.f, dy = 0.f; float rx = 0.f, ry = 0.f; float sample_x = 0.f, sample_y = 0.f; int x1 = 0, y1 = 0; const AKAZEOptions & options = *options_; const std::vector<TEvolution>& evolution = *evolution_; // Get the information from the keypoint float ratio = (float)(1 << kpt.octave); int scale = fRound(0.5f*kpt.size / ratio); float angle = (kpt.angle * static_cast<float>(CV_PI)) / 180.f; int level = kpt.class_id; float yf = kpt.pt.y / ratio; float xf = kpt.pt.x / ratio; float co = cos(angle); float si = sin(angle); // Allocate memory for the matrix of values Mat values = Mat_<float>::zeros((4 + 9 + 16)*options.descriptor_channels, 1); // Sample everything, but only do the comparisons vector<int> steps(3); steps.at(0) = options.descriptor_pattern_size; steps.at(1) = (int)ceil(2.f*options.descriptor_pattern_size / 3.f); steps.at(2) = options.descriptor_pattern_size / 2; for (int i = 0; i < descriptorSamples_.rows; i++) { const int *coords = descriptorSamples_.ptr<int>(i); int sample_step = steps.at(coords[0]); di = 0.0f; dx = 0.0f; dy = 0.0f; for (int k = coords[1]; k < coords[1] + sample_step; k++) { for (int l = coords[2]; l < coords[2] + sample_step; l++) { // Get the coordinates of the sample point sample_y = yf + (l*scale*co + k*scale*si); sample_x = xf + (-l*scale*si + k*scale*co); y1 = fRound(sample_y); x1 = fRound(sample_x); di += *(evolution[level].Lt.ptr<float>(y1)+x1); if (options.descriptor_channels > 1) { rx = *(evolution[level].Lx.ptr<float>(y1)+x1); ry = *(evolution[level].Ly.ptr<float>(y1)+x1); if (options.descriptor_channels == 2) { dx += sqrtf(rx*rx + ry*ry); } else if (options.descriptor_channels == 3) { // Get the x and y derivatives on the rotated axis dx += rx*co + ry*si; dy += -rx*si + ry*co; } } } } *(values.ptr<float>(options.descriptor_channels*i)) = di; if (options.descriptor_channels == 2) { *(values.ptr<float>(options.descriptor_channels*i + 1)) = dx; } else if (options.descriptor_channels == 3) { *(values.ptr<float>(options.descriptor_channels*i + 1)) = dx; *(values.ptr<float>(options.descriptor_channels*i + 2)) = dy; } } // Do the comparisons const float *vals = values.ptr<float>(0); const int *comps = descriptorBits_.ptr<int>(0); for (int i = 0; i<descriptorBits_.rows; i++) { if (vals[comps[2 * i]] > vals[comps[2 * i + 1]]) { desc[i / 8] |= (1 << (i % 8)); } } } /* ************************************************************************* */ /** * @brief This method computes the upright (not rotation invariant) M-LDB descriptor * of the provided keypoint given the main orientation of the keypoint. * The descriptor is computed based on a subset of the bits of the whole descriptor * @param kpt Input keypoint * @param desc Descriptor vector */ void Upright_MLDB_Descriptor_Subset_Invoker::Get_Upright_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char *desc) const { float di = 0.0f, dx = 0.0f, dy = 0.0f; float rx = 0.0f, ry = 0.0f; float sample_x = 0.0f, sample_y = 0.0f; int x1 = 0, y1 = 0; const AKAZEOptions & options = *options_; const std::vector<TEvolution>& evolution = *evolution_; // Get the information from the keypoint float ratio = (float)(1 << kpt.octave); int scale = fRound(0.5f*kpt.size / ratio); int level = kpt.class_id; float yf = kpt.pt.y / ratio; float xf = kpt.pt.x / ratio; // Allocate memory for the matrix of values Mat values = Mat_<float>::zeros((4 + 9 + 16)*options.descriptor_channels, 1); vector<int> steps(3); steps.at(0) = options.descriptor_pattern_size; steps.at(1) = static_cast<int>(ceil(2.f*options.descriptor_pattern_size / 3.f)); steps.at(2) = options.descriptor_pattern_size / 2; for (int i = 0; i < descriptorSamples_.rows; i++) { const int *coords = descriptorSamples_.ptr<int>(i); int sample_step = steps.at(coords[0]); di = 0.0f, dx = 0.0f, dy = 0.0f; for (int k = coords[1]; k < coords[1] + sample_step; k++) { for (int l = coords[2]; l < coords[2] + sample_step; l++) { // Get the coordinates of the sample point sample_y = yf + l*scale; sample_x = xf + k*scale; y1 = fRound(sample_y); x1 = fRound(sample_x); di += *(evolution[level].Lt.ptr<float>(y1)+x1); if (options.descriptor_channels > 1) { rx = *(evolution[level].Lx.ptr<float>(y1)+x1); ry = *(evolution[level].Ly.ptr<float>(y1)+x1); if (options.descriptor_channels == 2) { dx += sqrtf(rx*rx + ry*ry); } else if (options.descriptor_channels == 3) { dx += rx; dy += ry; } } } } *(values.ptr<float>(options.descriptor_channels*i)) = di; if (options.descriptor_channels == 2) { *(values.ptr<float>(options.descriptor_channels*i + 1)) = dx; } else if (options.descriptor_channels == 3) { *(values.ptr<float>(options.descriptor_channels*i + 1)) = dx; *(values.ptr<float>(options.descriptor_channels*i + 2)) = dy; } } // Do the comparisons const float *vals = values.ptr<float>(0); const int *comps = descriptorBits_.ptr<int>(0); for (int i = 0; i<descriptorBits_.rows; i++) { if (vals[comps[2 * i]] > vals[comps[2 * i + 1]]) { desc[i / 8] |= (1 << (i % 8)); } } } /* ************************************************************************* */ /** * @brief This function computes a (quasi-random) list of bits to be taken * from the full descriptor. To speed the extraction, the function creates * a list of the samples that are involved in generating at least a bit (sampleList) * and a list of the comparisons between those samples (comparisons) * @param sampleList * @param comparisons The matrix with the binary comparisons * @param nbits The number of bits of the descriptor * @param pattern_size The pattern size for the binary descriptor * @param nchannels Number of channels to consider in the descriptor (1-3) * @note The function keeps the 18 bits (3-channels by 6 comparisons) of the * coarser grid, since it provides the most robust estimations */ void generateDescriptorSubsample(Mat& sampleList, Mat& comparisons, int nbits, int pattern_size, int nchannels) { int ssz = 0; for (int i = 0; i < 3; i++) { int gz = (i + 2)*(i + 2); ssz += gz*(gz - 1) / 2; } ssz *= nchannels; CV_Assert(nbits <= ssz); // Descriptor size can't be bigger than full descriptor // Since the full descriptor is usually under 10k elements, we pick // the selection from the full matrix. We take as many samples per // pick as the number of channels. For every pick, we // take the two samples involved and put them in the sampling list Mat_<int> fullM(ssz / nchannels, 5); for (int i = 0, c = 0; i < 3; i++) { int gdiv = i + 2; //grid divisions, per row int gsz = gdiv*gdiv; int psz = (int)ceil(2.f*pattern_size / (float)gdiv); for (int j = 0; j < gsz; j++) { for (int k = j + 1; k < gsz; k++, c++) { fullM(c, 0) = i; fullM(c, 1) = psz*(j % gdiv) - pattern_size; fullM(c, 2) = psz*(j / gdiv) - pattern_size; fullM(c, 3) = psz*(k % gdiv) - pattern_size; fullM(c, 4) = psz*(k / gdiv) - pattern_size; } } } srand(1024); Mat_<int> comps = Mat_<int>(nchannels * (int)ceil(nbits / (float)nchannels), 2); comps = 1000; // Select some samples. A sample includes all channels int count = 0; int npicks = (int)ceil(nbits / (float)nchannels); Mat_<int> samples(29, 3); Mat_<int> fullcopy = fullM.clone(); samples = -1; for (int i = 0; i < npicks; i++) { int k = rand() % (fullM.rows - i); if (i < 6) { // Force use of the coarser grid values and comparisons k = i; } bool n = true; for (int j = 0; j < count; j++) { if (samples(j, 0) == fullcopy(k, 0) && samples(j, 1) == fullcopy(k, 1) && samples(j, 2) == fullcopy(k, 2)) { n = false; comps(i*nchannels, 0) = nchannels*j; comps(i*nchannels + 1, 0) = nchannels*j + 1; comps(i*nchannels + 2, 0) = nchannels*j + 2; break; } } if (n) { samples(count, 0) = fullcopy(k, 0); samples(count, 1) = fullcopy(k, 1); samples(count, 2) = fullcopy(k, 2); comps(i*nchannels, 0) = nchannels*count; comps(i*nchannels + 1, 0) = nchannels*count + 1; comps(i*nchannels + 2, 0) = nchannels*count + 2; count++; } n = true; for (int j = 0; j < count; j++) { if (samples(j, 0) == fullcopy(k, 0) && samples(j, 1) == fullcopy(k, 3) && samples(j, 2) == fullcopy(k, 4)) { n = false; comps(i*nchannels, 1) = nchannels*j; comps(i*nchannels + 1, 1) = nchannels*j + 1; comps(i*nchannels + 2, 1) = nchannels*j + 2; break; } } if (n) { samples(count, 0) = fullcopy(k, 0); samples(count, 1) = fullcopy(k, 3); samples(count, 2) = fullcopy(k, 4); comps(i*nchannels, 1) = nchannels*count; comps(i*nchannels + 1, 1) = nchannels*count + 1; comps(i*nchannels + 2, 1) = nchannels*count + 2; count++; } Mat tmp = fullcopy.row(k); fullcopy.row(fullcopy.rows - i - 1).copyTo(tmp); } sampleList = samples.rowRange(0, count).clone(); comparisons = comps.rowRange(0, nbits).clone(); } }