// License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2013, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Erping Pang, erping@multicorewareinc.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // // #ifdef DOUBLE_SUPPORT #ifdef cl_amd_fp64 #pragma OPENCL EXTENSION cl_amd_fp64:enable #elif defined (cl_khr_fp64) #pragma OPENCL EXTENSION cl_khr_fp64:enable #endif #define TYPE double #else #define TYPE float #endif #if defined ADDEXP #define EXP(X) exp(X) #else #define EXP(X) X #endif #if defined ADDPOW #define POW(X,Y) pow(fabs(X),(Y)) #else #define POW(X,Y) X #endif #define MAX_VAL (FLT_MAX*1e-3) #define BLOCK_SIZE 16 __kernel void svm_linear(__global float* src, int src_step, __global float* src2, int src2_step, __global TYPE* dst, int dst_step, int src_rows, int src2_cols, int width, TYPE alpha, TYPE beta) { const int col = get_global_id(0); const int row = get_global_id(1); if(row < src_rows && col < src2_cols) { int t = 0; TYPE temp = 0.0; for(t = 0; t < width - BLOCK_SIZE; t += BLOCK_SIZE) { float16 t0 = vload16(0, src + row * src_step + t); float16 t1 = vload16(0, src2 + col * src2_step + t); t0 *= t1; temp += t0.s0 + t0.s1 + t0.s2 + t0.s3 + t0.s4 + t0.s5 + t0.s6 + t0.s7 + t0.s8 + t0.s9 + t0.sa + t0.sb + t0.sc + t0.sd + t0.se + t0.sf; } for(; t < width; t++) { temp += src[row * src_step + t] * src2[col * src2_step + t]; } TYPE temp1 = (TYPE) (temp * alpha + beta); if( temp1 > MAX_VAL ) { dst[row * dst_step + col] = MAX_VAL; } else { dst[row * dst_step + col] = temp1; } } } __kernel void svm_sigmod(__global float* src, int src_step, __global float* src2, int src2_step, __global TYPE* dst, int dst_step, int src_rows, int src2_cols, int width, TYPE alpha, TYPE beta) { const int col = get_global_id(0); const int row = get_global_id(1); if(row < src_rows && col < src2_cols) { int t = 0; TYPE temp = 0.0; for(t = 0; t < width - BLOCK_SIZE; t += BLOCK_SIZE) { float16 t0 = vload16(0, src + row * src_step + t); float16 t1 = vload16(0, src2 + col * src2_step + t); t0 *= t1; temp += t0.s0 + t0.s1 + t0.s2 + t0.s3 + t0.s4 + t0.s5 + t0.s6 + t0.s7 + t0.s8 + t0.s9 + t0.sa + t0.sb + t0.sc + t0.sd + t0.se + t0.sf; } for(; t < width; t++) { temp += src[row * src_step + t] * src2[col * src2_step + t]; } TYPE tp = (TYPE) (temp * alpha + beta); TYPE e = exp(-fabs(tp)); TYPE temp1; if(tp > 0) { temp1 = (TYPE)((1. - e) / (1. + e)); } else { temp1 = (TYPE)((e - 1.) / (e + 1.)); } if( temp1 > MAX_VAL ) { dst[row * dst_step + col] = MAX_VAL; } else { dst[row * dst_step + col] = temp1; } } } __kernel void svm_poly(__global float* src, int src_step, __global float* src2, int src2_step, __global TYPE* dst, int dst_step, int src_rows, int src2_cols, int width, TYPE alpha, TYPE beta, TYPE degree) { const int col = get_global_id(0); const int row = get_global_id(1); if(row < src_rows && col < src2_cols) { int t = 0; TYPE temp = 0.0; for(t = 0; t < width - BLOCK_SIZE; t += BLOCK_SIZE) { float16 t0 = vload16(0, src + row * src_step + t); float16 t1 = vload16(0, src2 + col * src2_step + t); t0 *= t1; temp += t0.s0 + t0.s1 + t0.s2 + t0.s3 + t0.s4 + t0.s5 + t0.s6 + t0.s7 + t0.s8 + t0.s9 + t0.sa + t0.sb + t0.sc + t0.sd + t0.se + t0.sf; } for(; t < width; t++) { temp += src[row * src_step + t] * src2[col * src2_step + t]; } TYPE temp1 = (TYPE)(POW((temp * alpha + beta), degree)); if( temp1 > MAX_VAL ) { dst[row * dst_step + col] = MAX_VAL; } else { dst[row * dst_step + col] = temp1; } } } __kernel void svm_rbf(__global float* src, int src_step, __global float* src2, int src2_step, __global TYPE* dst, int dst_step, int src_rows, int src2_cols, int width, TYPE gamma) { const int col = get_global_id(0); const int row = get_global_id(1); if(row < src_rows && col < src2_cols) { int t = 0; TYPE temp = 0.0; for(t = 0; t < width - BLOCK_SIZE; t += BLOCK_SIZE) { float16 t0 = vload16(0, src + row * src_step + t); float16 t1 = vload16(0, src2 + col * src2_step + t); t0 = (t0 - t1) * (t0 - t1); temp += t0.s0 + t0.s1 + t0.s2 + t0.s3 + t0.s4 + t0.s5 + t0.s6 + t0.s7 + t0.s8 + t0.s9 + t0.sa + t0.sb + t0.sc + t0.sd + t0.se + t0.sf; } for(; t < width; t++) { temp += (src[row * src_step + t] - src2[col * src2_step + t]) * (src[row * src_step + t] - src2[col * src2_step + t]); } TYPE temp1 = EXP((TYPE)(temp * gamma)); if( temp1 > MAX_VAL ) { dst[row * dst_step + col] = MAX_VAL; } else { dst[row * dst_step + col] = temp1; } } }