/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::gpu;
using namespace std;

#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)

void cv::gpu::StereoBeliefPropagation::estimateRecommendedParams(int, int, int&, int&, int&) { throw_nogpu(); }

cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, int) { throw_nogpu(); }
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, float, float, float, float, int) { throw_nogpu(); }

void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }

void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }

#else /* !defined (HAVE_CUDA) */

namespace cv { namespace gpu { namespace device
{
    namespace stereobp
    {
        void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump);
        template<typename T, typename D>
        void comp_data_gpu(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream);
        template<typename T>
        void data_step_down_gpu(int dst_cols, int dst_rows, int src_cols, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream);
        template <typename T>
        void level_up_messages_gpu(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream);
        template <typename T>
        void calc_all_iterations_gpu(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d,
            const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream);
        template <typename T>
        void output_gpu(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data,
            const PtrStepSz<short>& disp, cudaStream_t stream);
    }
}}}

using namespace ::cv::gpu::device::stereobp;

namespace
{
    const float DEFAULT_MAX_DATA_TERM = 10.0f;
    const float DEFAULT_DATA_WEIGHT = 0.07f;
    const float DEFAULT_MAX_DISC_TERM = 1.7f;
    const float DEFAULT_DISC_SINGLE_JUMP = 1.0f;
}

void cv::gpu::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels)
{
    ndisp = width / 4;
    if ((ndisp & 1) != 0)
        ndisp++;

    int mm = ::max(width, height);
    iters = mm / 100 + 2;

    levels = (int)(::log(static_cast<double>(mm)) + 1) * 4 / 5;
    if (levels == 0) levels++;
}

cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, int msg_type_)
    : ndisp(ndisp_), iters(iters_), levels(levels_),
      max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT),
      max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP),
      msg_type(msg_type_), datas(levels_)
{
}

cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_, int msg_type_)
    : ndisp(ndisp_), iters(iters_), levels(levels_),
      max_data_term(max_data_term_), data_weight(data_weight_),
      max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_),
      msg_type(msg_type_), datas(levels_)
{
}

namespace
{
    class StereoBeliefPropagationImpl
    {
    public:
        StereoBeliefPropagationImpl(StereoBeliefPropagation& rthis_,
                                    GpuMat& u_, GpuMat& d_, GpuMat& l_, GpuMat& r_,
                                    GpuMat& u2_, GpuMat& d2_, GpuMat& l2_, GpuMat& r2_,
                                    vector<GpuMat>& datas_, GpuMat& out_)
            : rthis(rthis_), u(u_), d(d_), l(l_), r(r_), u2(u2_), d2(d2_), l2(l2_), r2(r2_), datas(datas_), out(out_),
              zero(Scalar::all(0)), scale(rthis_.msg_type == CV_32F ? 1.0f : 10.0f)
        {
            CV_Assert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels);
            CV_Assert(rthis.msg_type == CV_32F || rthis.msg_type == CV_16S);
            CV_Assert(rthis.msg_type == CV_32F || (1 << (rthis.levels - 1)) * scale * rthis.max_data_term < numeric_limits<short>::max());
        }

        void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream)
        {
            typedef void (*comp_data_t)(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream);
            static const comp_data_t comp_data_callers[2][5] =
            {
                {0, comp_data_gpu<unsigned char, short>, 0, comp_data_gpu<uchar3, short>, comp_data_gpu<uchar4, short>},
                {0, comp_data_gpu<unsigned char, float>, 0, comp_data_gpu<uchar3, float>, comp_data_gpu<uchar4, float>}
            };

            CV_Assert(left.size() == right.size() && left.type() == right.type());
            CV_Assert(left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4);

            rows = left.rows;
            cols = left.cols;

            int divisor = (int)pow(2.f, rthis.levels - 1.0f);
            int lowest_cols = cols / divisor;
            int lowest_rows = rows / divisor;
            const int min_image_dim_size = 2;
            CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size);

            init(stream);

            createContinuous(rows * rthis.ndisp, cols, rthis.msg_type, datas[0]);

            comp_data_callers[rthis.msg_type == CV_32F][left.channels()](left, right, datas[0], StreamAccessor::getStream(stream));

            calcBP(disp, stream);
        }

        void operator()(const GpuMat& data, GpuMat& disp, Stream& stream)
        {
            CV_Assert((data.type() == rthis.msg_type) && (data.rows % rthis.ndisp == 0));

            rows = data.rows / rthis.ndisp;
            cols = data.cols;

            int divisor = (int)pow(2.f, rthis.levels - 1.0f);
            int lowest_cols = cols / divisor;
            int lowest_rows = rows / divisor;
            const int min_image_dim_size = 2;
            CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size);

            init(stream);

            datas[0] = data;

            calcBP(disp, stream);
        }
    private:
        void init(Stream& stream)
        {
            createContinuous(rows * rthis.ndisp, cols, rthis.msg_type, u);
            createContinuous(rows * rthis.ndisp, cols, rthis.msg_type, d);
            createContinuous(rows * rthis.ndisp, cols, rthis.msg_type, l);
            createContinuous(rows * rthis.ndisp, cols, rthis.msg_type, r);

            if (rthis.levels & 1)
            {
                //can clear less area
                if (stream)
                {
                    stream.enqueueMemSet(u, zero);
                    stream.enqueueMemSet(d, zero);
                    stream.enqueueMemSet(l, zero);
                    stream.enqueueMemSet(r, zero);
                }
                else
                {
                    u.setTo(zero);
                    d.setTo(zero);
                    l.setTo(zero);
                    r.setTo(zero);
                }
            }

            if (rthis.levels > 1)
            {
                int less_rows = (rows + 1) / 2;
                int less_cols = (cols + 1) / 2;

                createContinuous(less_rows * rthis.ndisp, less_cols, rthis.msg_type, u2);
                createContinuous(less_rows * rthis.ndisp, less_cols, rthis.msg_type, d2);
                createContinuous(less_rows * rthis.ndisp, less_cols, rthis.msg_type, l2);
                createContinuous(less_rows * rthis.ndisp, less_cols, rthis.msg_type, r2);

                if ((rthis.levels & 1) == 0)
                {
                    if (stream)
                    {
                        stream.enqueueMemSet(u2, zero);
                        stream.enqueueMemSet(d2, zero);
                        stream.enqueueMemSet(l2, zero);
                        stream.enqueueMemSet(r2, zero);
                    }
                    else
                    {
                        u2.setTo(zero);
                        d2.setTo(zero);
                        l2.setTo(zero);
                        r2.setTo(zero);
                    }
                }
            }

            load_constants(rthis.ndisp, rthis.max_data_term, scale * rthis.data_weight, scale * rthis.max_disc_term, scale * rthis.disc_single_jump);

            datas.resize(rthis.levels);

            cols_all.resize(rthis.levels);
            rows_all.resize(rthis.levels);

            cols_all[0] = cols;
            rows_all[0] = rows;
        }

        void calcBP(GpuMat& disp, Stream& stream)
        {
            typedef void (*data_step_down_t)(int dst_cols, int dst_rows, int src_cols, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream);
            static const data_step_down_t data_step_down_callers[2] =
            {
                data_step_down_gpu<short>, data_step_down_gpu<float>
            };

            typedef void (*level_up_messages_t)(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream);
            static const level_up_messages_t level_up_messages_callers[2] =
            {
                level_up_messages_gpu<short>, level_up_messages_gpu<float>
            };

            typedef void (*calc_all_iterations_t)(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream);
            static const calc_all_iterations_t calc_all_iterations_callers[2] =
            {
                calc_all_iterations_gpu<short>, calc_all_iterations_gpu<float>
            };

            typedef void (*output_t)(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, const PtrStepSz<short>& disp, cudaStream_t stream);
            static const output_t output_callers[2] =
            {
                output_gpu<short>, output_gpu<float>
            };

            const int funcIdx = rthis.msg_type == CV_32F;

            cudaStream_t cudaStream = StreamAccessor::getStream(stream);

            for (int i = 1; i < rthis.levels; ++i)
            {
                cols_all[i] = (cols_all[i-1] + 1) / 2;
                rows_all[i] = (rows_all[i-1] + 1) / 2;

                createContinuous(rows_all[i] * rthis.ndisp, cols_all[i], rthis.msg_type, datas[i]);

                data_step_down_callers[funcIdx](cols_all[i], rows_all[i], cols_all[i-1], rows_all[i-1], datas[i-1], datas[i], cudaStream);
            }

            PtrStepSzb mus[] = {u, u2};
            PtrStepSzb mds[] = {d, d2};
            PtrStepSzb mrs[] = {r, r2};
            PtrStepSzb mls[] = {l, l2};

            int mem_idx = (rthis.levels & 1) ? 0 : 1;

            for (int i = rthis.levels - 1; i >= 0; --i)
            {
                // for lower level we have already computed messages by setting to zero
                if (i != rthis.levels - 1)
                    level_up_messages_callers[funcIdx](mem_idx, cols_all[i], rows_all[i], rows_all[i+1], mus, mds, mls, mrs, cudaStream);

                calc_all_iterations_callers[funcIdx](cols_all[i], rows_all[i], rthis.iters, mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas[i], cudaStream);

                mem_idx = (mem_idx + 1) & 1;
            }

            if (disp.empty())
                disp.create(rows, cols, CV_16S);

            out = ((disp.type() == CV_16S) ? disp : (out.create(rows, cols, CV_16S), out));

            if (stream)
                stream.enqueueMemSet(out, zero);
            else
                out.setTo(zero);

            output_callers[funcIdx](u, d, l, r, datas.front(), out, cudaStream);

            if (disp.type() != CV_16S)
            {
                if (stream)
                    stream.enqueueConvert(out, disp, disp.type());
                else
                    out.convertTo(disp, disp.type());
            }
        }

        StereoBeliefPropagation& rthis;

        GpuMat& u;
        GpuMat& d;
        GpuMat& l;
        GpuMat& r;

        GpuMat& u2;
        GpuMat& d2;
        GpuMat& l2;
        GpuMat& r2;

        vector<GpuMat>& datas;
        GpuMat& out;

        const Scalar zero;
        const float scale;

        int rows, cols;

        vector<int> cols_all, rows_all;
    };
}

void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream)
{
    StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out);
    impl(left, right, disp, stream);
}

void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& data, GpuMat& disp, Stream& stream)
{
    StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out);
    impl(data, disp, stream);
}

#endif /* !defined (HAVE_CUDA) */