/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

#if !defined HAVE_CUDA || defined(CUDA_DISABLER)


void cv::gpu::warpAffine(const GpuMat&, GpuMat&, const Mat&, Size, int, int, Scalar, Stream&) { throw_nogpu(); }
void cv::gpu::buildWarpAffineMaps(const Mat&, bool, Size, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }

void cv::gpu::warpPerspective(const GpuMat&, GpuMat&, const Mat&, Size, int, int, Scalar, Stream&) { throw_nogpu(); }
void cv::gpu::buildWarpPerspectiveMaps(const Mat&, bool, Size, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }

#else // HAVE_CUDA

namespace cv { namespace gpu { namespace device
{
    namespace imgproc
    {
        void buildWarpAffineMaps_gpu(float coeffs[2 * 3], PtrStepSzf xmap, PtrStepSzf ymap, cudaStream_t stream);

        template <typename T>
        void warpAffine_gpu(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[2 * 3], PtrStepSzb dst, int interpolation,
                            int borderMode, const float* borderValue, cudaStream_t stream, bool cc20);

        void buildWarpPerspectiveMaps_gpu(float coeffs[3 * 3], PtrStepSzf xmap, PtrStepSzf ymap, cudaStream_t stream);

        template <typename T>
        void warpPerspective_gpu(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[3 * 3], PtrStepSzb dst, int interpolation,
                            int borderMode, const float* borderValue, cudaStream_t stream, bool cc20);
    }
}}}

void cv::gpu::buildWarpAffineMaps(const Mat& M, bool inverse, Size dsize, GpuMat& xmap, GpuMat& ymap, Stream& stream)
{
    using namespace cv::gpu::device::imgproc;

    CV_Assert(M.rows == 2 && M.cols == 3);

    xmap.create(dsize, CV_32FC1);
    ymap.create(dsize, CV_32FC1);

    float coeffs[2 * 3];
    Mat coeffsMat(2, 3, CV_32F, (void*)coeffs);

    if (inverse)
        M.convertTo(coeffsMat, coeffsMat.type());
    else
    {
        cv::Mat iM;
        invertAffineTransform(M, iM);
        iM.convertTo(coeffsMat, coeffsMat.type());
    }

    buildWarpAffineMaps_gpu(coeffs, xmap, ymap, StreamAccessor::getStream(stream));
}

void cv::gpu::buildWarpPerspectiveMaps(const Mat& M, bool inverse, Size dsize, GpuMat& xmap, GpuMat& ymap, Stream& stream)
{
    using namespace cv::gpu::device::imgproc;

    CV_Assert(M.rows == 3 && M.cols == 3);

    xmap.create(dsize, CV_32FC1);
    ymap.create(dsize, CV_32FC1);

    float coeffs[3 * 3];
    Mat coeffsMat(3, 3, CV_32F, (void*)coeffs);

    if (inverse)
        M.convertTo(coeffsMat, coeffsMat.type());
    else
    {
        cv::Mat iM;
        invert(M, iM);
        iM.convertTo(coeffsMat, coeffsMat.type());
    }

    buildWarpPerspectiveMaps_gpu(coeffs, xmap, ymap, StreamAccessor::getStream(stream));
}

namespace
{
    template<int DEPTH> struct NppTypeTraits;
    template<> struct NppTypeTraits<CV_8U>  { typedef Npp8u npp_t; };
    template<> struct NppTypeTraits<CV_8S>  { typedef Npp8s npp_t; };
    template<> struct NppTypeTraits<CV_16U> { typedef Npp16u npp_t; };
    template<> struct NppTypeTraits<CV_16S> { typedef Npp16s npp_t; typedef Npp16sc npp_complex_type; };
    template<> struct NppTypeTraits<CV_32S> { typedef Npp32s npp_t; typedef Npp32sc npp_complex_type; };
    template<> struct NppTypeTraits<CV_32F> { typedef Npp32f npp_t; typedef Npp32fc npp_complex_type; };
    template<> struct NppTypeTraits<CV_64F> { typedef Npp64f npp_t; typedef Npp64fc npp_complex_type; };

    template <int DEPTH> struct NppWarpFunc
    {
        typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;

        typedef NppStatus (*func_t)(const npp_t* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, npp_t* pDst,
                                    int dstStep, NppiRect dstRoi, const double coeffs[][3],
                                    int interpolation);
    };

    template <int DEPTH, typename NppWarpFunc<DEPTH>::func_t func> struct NppWarp
    {
        typedef typename NppWarpFunc<DEPTH>::npp_t npp_t;

        static void call(const cv::gpu::GpuMat& src, cv::gpu::GpuMat& dst, double coeffs[][3], int interpolation, cudaStream_t stream)
        {
            static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC};

            NppiSize srcsz;
            srcsz.height = src.rows;
            srcsz.width = src.cols;

            NppiRect srcroi;
            srcroi.x = 0;
            srcroi.y = 0;
            srcroi.height = src.rows;
            srcroi.width = src.cols;

            NppiRect dstroi;
            dstroi.x = 0;
            dstroi.y = 0;
            dstroi.height = dst.rows;
            dstroi.width = dst.cols;

            cv::gpu::NppStreamHandler h(stream);

            nppSafeCall( func(src.ptr<npp_t>(), srcsz, static_cast<int>(src.step), srcroi,
                              dst.ptr<npp_t>(), static_cast<int>(dst.step), dstroi,
                              coeffs, npp_inter[interpolation]) );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
    };
}

void cv::gpu::warpAffine(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags, int borderMode, Scalar borderValue, Stream& s)
{
    CV_Assert(M.rows == 2 && M.cols == 3);

    int interpolation = flags & INTER_MAX;

    CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
    CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);
    CV_Assert(borderMode == BORDER_REFLECT101 || borderMode == BORDER_REPLICATE || borderMode == BORDER_CONSTANT || borderMode == BORDER_REFLECT || borderMode == BORDER_WRAP);

    dst.create(dsize, src.type());

    Size wholeSize;
    Point ofs;
    src.locateROI(wholeSize, ofs);

    static const bool useNppTab[6][4][3] =
    {
        {
            {false, false, true},
            {false, false, false},
            {false, true, true},
            {false, false, false}
        },
        {
            {false, false, false},
            {false, false, false},
            {false, false, false},
            {false, false, false}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, false}
        },
        {
            {false, false, false},
            {false, false, false},
            {false, false, false},
            {false, false, false}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, true}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, true}
        }
    };

    bool useNpp = borderMode == BORDER_CONSTANT && ofs.x == 0 && ofs.y == 0 && useNppTab[src.depth()][src.channels() - 1][interpolation];
    // NPP bug on float data
    useNpp = useNpp && src.depth() != CV_32F;

    if (useNpp)
    {
        typedef void (*func_t)(const cv::gpu::GpuMat& src, cv::gpu::GpuMat& dst, double coeffs[][3], int flags, cudaStream_t stream);

        static const func_t funcs[2][6][4] =
        {
            {
                {NppWarp<CV_8U, nppiWarpAffine_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpAffine_8u_C3R>::call, NppWarp<CV_8U, nppiWarpAffine_8u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_16U, nppiWarpAffine_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpAffine_16u_C3R>::call, NppWarp<CV_16U, nppiWarpAffine_16u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_32S, nppiWarpAffine_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpAffine_32s_C3R>::call, NppWarp<CV_32S, nppiWarpAffine_32s_C4R>::call},
                {NppWarp<CV_32F, nppiWarpAffine_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpAffine_32f_C3R>::call, NppWarp<CV_32F, nppiWarpAffine_32f_C4R>::call}
            },
            {
                {NppWarp<CV_8U, nppiWarpAffineBack_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpAffineBack_8u_C3R>::call, NppWarp<CV_8U, nppiWarpAffineBack_8u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_16U, nppiWarpAffineBack_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpAffineBack_16u_C3R>::call, NppWarp<CV_16U, nppiWarpAffineBack_16u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_32S, nppiWarpAffineBack_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpAffineBack_32s_C3R>::call, NppWarp<CV_32S, nppiWarpAffineBack_32s_C4R>::call},
                {NppWarp<CV_32F, nppiWarpAffineBack_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpAffineBack_32f_C3R>::call, NppWarp<CV_32F, nppiWarpAffineBack_32f_C4R>::call}
            }
        };

        dst.setTo(borderValue);

        double coeffs[2][3];
        Mat coeffsMat(2, 3, CV_64F, (void*)coeffs);
        M.convertTo(coeffsMat, coeffsMat.type());

        const func_t func = funcs[(flags & WARP_INVERSE_MAP) != 0][src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        func(src, dst, coeffs, interpolation, StreamAccessor::getStream(s));
    }
    else
    {
        using namespace cv::gpu::device::imgproc;

        typedef void (*func_t)(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[2 * 3], PtrStepSzb dst, int interpolation,
            int borderMode, const float* borderValue, cudaStream_t stream, bool cc20);

#ifdef OPENCV_TINY_GPU_MODULE
        static const func_t funcs[6][4] =
        {
            {warpAffine_gpu<uchar>      , 0 /*warpAffine_gpu<uchar2>*/ , warpAffine_gpu<uchar3>     , warpAffine_gpu<uchar4>     },
            {0, 0, 0, 0},
            {0, 0, 0, 0},
            {0, 0, 0, 0},
            {0, 0, 0, 0},
            {warpAffine_gpu<float>      , 0 /*warpAffine_gpu<float2>*/ , warpAffine_gpu<float3>     , warpAffine_gpu<float4>     }
        };
#else
        static const func_t funcs[6][4] =
        {
            {warpAffine_gpu<uchar>      , 0 /*warpAffine_gpu<uchar2>*/ , warpAffine_gpu<uchar3>     , warpAffine_gpu<uchar4>     },
            {0 /*warpAffine_gpu<schar>*/, 0 /*warpAffine_gpu<char2>*/  , 0 /*warpAffine_gpu<char3>*/, 0 /*warpAffine_gpu<char4>*/},
            {warpAffine_gpu<ushort>     , 0 /*warpAffine_gpu<ushort2>*/, warpAffine_gpu<ushort3>    , warpAffine_gpu<ushort4>    },
            {warpAffine_gpu<short>      , 0 /*warpAffine_gpu<short2>*/ , warpAffine_gpu<short3>     , warpAffine_gpu<short4>     },
            {0 /*warpAffine_gpu<int>*/  , 0 /*warpAffine_gpu<int2>*/   , 0 /*warpAffine_gpu<int3>*/ , 0 /*warpAffine_gpu<int4>*/ },
            {warpAffine_gpu<float>      , 0 /*warpAffine_gpu<float2>*/ , warpAffine_gpu<float3>     , warpAffine_gpu<float4>     }
        };
#endif

        const func_t func = funcs[src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        int gpuBorderType;
        CV_Assert(tryConvertToGpuBorderType(borderMode, gpuBorderType));

        float coeffs[2 * 3];
        Mat coeffsMat(2, 3, CV_32F, (void*)coeffs);

        if (flags & WARP_INVERSE_MAP)
            M.convertTo(coeffsMat, coeffsMat.type());
        else
        {
            cv::Mat iM;
            invertAffineTransform(M, iM);
            iM.convertTo(coeffsMat, coeffsMat.type());
        }

        Scalar_<float> borderValueFloat;
        borderValueFloat = borderValue;

        func(src, PtrStepSzb(wholeSize.height, wholeSize.width, src.datastart, src.step), ofs.x, ofs.y, coeffs,
            dst, interpolation, gpuBorderType, borderValueFloat.val, StreamAccessor::getStream(s), deviceSupports(FEATURE_SET_COMPUTE_20));
    }
}

void cv::gpu::warpPerspective(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags, int borderMode, Scalar borderValue, Stream& s)
{
    CV_Assert(M.rows == 3 && M.cols == 3);

    int interpolation = flags & INTER_MAX;

    CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
    CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);
    CV_Assert(borderMode == BORDER_REFLECT101 || borderMode == BORDER_REPLICATE || borderMode == BORDER_CONSTANT || borderMode == BORDER_REFLECT || borderMode == BORDER_WRAP);

    dst.create(dsize, src.type());

    Size wholeSize;
    Point ofs;
    src.locateROI(wholeSize, ofs);

    static const bool useNppTab[6][4][3] =
    {
        {
            {false, false, true},
            {false, false, false},
            {false, true, true},
            {false, false, false}
        },
        {
            {false, false, false},
            {false, false, false},
            {false, false, false},
            {false, false, false}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, false}
        },
        {
            {false, false, false},
            {false, false, false},
            {false, false, false},
            {false, false, false}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, true}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, true}
        }
    };

    bool useNpp = borderMode == BORDER_CONSTANT && ofs.x == 0 && ofs.y == 0 && useNppTab[src.depth()][src.channels() - 1][interpolation];
    // NPP bug on float data
    useNpp = useNpp && src.depth() != CV_32F;

    if (useNpp)
    {
        typedef void (*func_t)(const cv::gpu::GpuMat& src, cv::gpu::GpuMat& dst, double coeffs[][3], int flags, cudaStream_t stream);

        static const func_t funcs[2][6][4] =
        {
            {
                {NppWarp<CV_8U, nppiWarpPerspective_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspective_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspective_8u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_16U, nppiWarpPerspective_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspective_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspective_16u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_32S, nppiWarpPerspective_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspective_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspective_32s_C4R>::call},
                {NppWarp<CV_32F, nppiWarpPerspective_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspective_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspective_32f_C4R>::call}
            },
            {
                {NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C4R>::call},
                {NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C4R>::call}
            }
        };

        dst.setTo(borderValue);

        double coeffs[3][3];
        Mat coeffsMat(3, 3, CV_64F, (void*)coeffs);
        M.convertTo(coeffsMat, coeffsMat.type());

        const func_t func = funcs[(flags & WARP_INVERSE_MAP) != 0][src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        func(src, dst, coeffs, interpolation, StreamAccessor::getStream(s));
    }
    else
    {
        using namespace cv::gpu::device::imgproc;

        typedef void (*func_t)(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[2 * 3], PtrStepSzb dst, int interpolation,
            int borderMode, const float* borderValue, cudaStream_t stream, bool cc20);

#ifdef OPENCV_TINY_GPU_MODULE
        static const func_t funcs[6][4] =
        {
            {warpPerspective_gpu<uchar>      , 0 /*warpPerspective_gpu<uchar2>*/ , warpPerspective_gpu<uchar3>     , warpPerspective_gpu<uchar4>     },
            {0, 0, 0, 0},
            {0, 0, 0, 0},
            {0, 0, 0, 0},
            {0, 0, 0, 0},
            {warpPerspective_gpu<float>      , 0 /*warpPerspective_gpu<float2>*/ , warpPerspective_gpu<float3>     , warpPerspective_gpu<float4>     }
        };
#else
        static const func_t funcs[6][4] =
        {
            {warpPerspective_gpu<uchar>      , 0 /*warpPerspective_gpu<uchar2>*/ , warpPerspective_gpu<uchar3>     , warpPerspective_gpu<uchar4>     },
            {0 /*warpPerspective_gpu<schar>*/, 0 /*warpPerspective_gpu<char2>*/  , 0 /*warpPerspective_gpu<char3>*/, 0 /*warpPerspective_gpu<char4>*/},
            {warpPerspective_gpu<ushort>     , 0 /*warpPerspective_gpu<ushort2>*/, warpPerspective_gpu<ushort3>    , warpPerspective_gpu<ushort4>    },
            {warpPerspective_gpu<short>      , 0 /*warpPerspective_gpu<short2>*/ , warpPerspective_gpu<short3>     , warpPerspective_gpu<short4>     },
            {0 /*warpPerspective_gpu<int>*/  , 0 /*warpPerspective_gpu<int2>*/   , 0 /*warpPerspective_gpu<int3>*/ , 0 /*warpPerspective_gpu<int4>*/ },
            {warpPerspective_gpu<float>      , 0 /*warpPerspective_gpu<float2>*/ , warpPerspective_gpu<float3>     , warpPerspective_gpu<float4>     }
        };
#endif

        const func_t func = funcs[src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        int gpuBorderType;
        CV_Assert(tryConvertToGpuBorderType(borderMode, gpuBorderType));

        float coeffs[3 * 3];
        Mat coeffsMat(3, 3, CV_32F, (void*)coeffs);

        if (flags & WARP_INVERSE_MAP)
            M.convertTo(coeffsMat, coeffsMat.type());
        else
        {
            cv::Mat iM;
            invert(M, iM);
            iM.convertTo(coeffsMat, coeffsMat.type());
        }

        Scalar_<float> borderValueFloat;
        borderValueFloat = borderValue;

        func(src, PtrStepSzb(wholeSize.height, wholeSize.width, src.datastart, src.step), ofs.x, ofs.y, coeffs,
            dst, interpolation, gpuBorderType, borderValueFloat.val, StreamAccessor::getStream(s), deviceSupports(FEATURE_SET_COMPUTE_20));
    }
}

#endif // HAVE_CUDA