/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #if !defined CUDA_DISABLER #include "opencv2/gpu/device/common.hpp" #include "opencv2/gpu/device/vec_traits.hpp" #include "opencv2/gpu/device/vec_math.hpp" #include "opencv2/gpu/device/functional.hpp" #include "opencv2/gpu/device/reduce.hpp" #include "opencv2/gpu/device/border_interpolate.hpp" using namespace cv::gpu; typedef unsigned char uchar; typedef unsigned short ushort; ////////////////////////////////////////////////////////////////////////////////// //// Non Local Means Denosing namespace cv { namespace gpu { namespace device { namespace imgproc { __device__ __forceinline__ float norm2(const float& v) { return v*v; } __device__ __forceinline__ float norm2(const float2& v) { return v.x*v.x + v.y*v.y; } __device__ __forceinline__ float norm2(const float3& v) { return v.x*v.x + v.y*v.y + v.z*v.z; } __device__ __forceinline__ float norm2(const float4& v) { return v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w; } template<typename T, typename B> __global__ void nlm_kernel(const PtrStep<T> src, PtrStepSz<T> dst, const B b, int search_radius, int block_radius, float noise_mult) { typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type value_type; const int i = blockDim.y * blockIdx.y + threadIdx.y; const int j = blockDim.x * blockIdx.x + threadIdx.x; if (j >= dst.cols || i >= dst.rows) return; int bsize = search_radius + block_radius; int search_window = 2 * search_radius + 1; float minus_search_window2_inv = -1.f/(search_window * search_window); value_type sum1 = VecTraits<value_type>::all(0); float sum2 = 0.f; if (j - bsize >= 0 && j + bsize < dst.cols && i - bsize >= 0 && i + bsize < dst.rows) { for(float y = -search_radius; y <= search_radius; ++y) for(float x = -search_radius; x <= search_radius; ++x) { float dist2 = 0; for(float ty = -block_radius; ty <= block_radius; ++ty) for(float tx = -block_radius; tx <= block_radius; ++tx) { value_type bv = saturate_cast<value_type>(src(i + y + ty, j + x + tx)); value_type av = saturate_cast<value_type>(src(i + ty, j + tx)); dist2 += norm2(av - bv); } float w = __expf(dist2 * noise_mult + (x * x + y * y) * minus_search_window2_inv); /*if (i == 255 && j == 255) printf("%f %f\n", w, dist2 * minus_h2_inv + (x * x + y * y) * minus_search_window2_inv);*/ sum1 = sum1 + w * saturate_cast<value_type>(src(i + y, j + x)); sum2 += w; } } else { for(float y = -search_radius; y <= search_radius; ++y) for(float x = -search_radius; x <= search_radius; ++x) { float dist2 = 0; for(float ty = -block_radius; ty <= block_radius; ++ty) for(float tx = -block_radius; tx <= block_radius; ++tx) { value_type bv = saturate_cast<value_type>(b.at(i + y + ty, j + x + tx, src)); value_type av = saturate_cast<value_type>(b.at(i + ty, j + tx, src)); dist2 += norm2(av - bv); } float w = __expf(dist2 * noise_mult + (x * x + y * y) * minus_search_window2_inv); sum1 = sum1 + w * saturate_cast<value_type>(b.at(i + y, j + x, src)); sum2 += w; } } dst(i, j) = saturate_cast<T>(sum1 / sum2); } template<typename T, template <typename> class B> void nlm_caller(const PtrStepSzb src, PtrStepSzb dst, int search_radius, int block_radius, float h, cudaStream_t stream) { dim3 block (32, 8); dim3 grid (divUp (src.cols, block.x), divUp (src.rows, block.y)); B<T> b(src.rows, src.cols); int block_window = 2 * block_radius + 1; float minus_h2_inv = -1.f/(h * h * VecTraits<T>::cn); float noise_mult = minus_h2_inv/(block_window * block_window); cudaSafeCall( cudaFuncSetCacheConfig (nlm_kernel<T, B<T> >, cudaFuncCachePreferL1) ); nlm_kernel<<<grid, block>>>((PtrStepSz<T>)src, (PtrStepSz<T>)dst, b, search_radius, block_radius, noise_mult); cudaSafeCall ( cudaGetLastError () ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template<typename T> void nlm_bruteforce_gpu(const PtrStepSzb& src, PtrStepSzb dst, int search_radius, int block_radius, float h, int borderMode, cudaStream_t stream) { typedef void (*func_t)(const PtrStepSzb src, PtrStepSzb dst, int search_radius, int block_radius, float h, cudaStream_t stream); static func_t funcs[] = { nlm_caller<T, BrdReflect101>, nlm_caller<T, BrdReplicate>, nlm_caller<T, BrdConstant>, nlm_caller<T, BrdReflect>, nlm_caller<T, BrdWrap>, }; funcs[borderMode](src, dst, search_radius, block_radius, h, stream); } template void nlm_bruteforce_gpu<uchar>(const PtrStepSzb&, PtrStepSzb, int, int, float, int, cudaStream_t); template void nlm_bruteforce_gpu<uchar2>(const PtrStepSzb&, PtrStepSzb, int, int, float, int, cudaStream_t); template void nlm_bruteforce_gpu<uchar3>(const PtrStepSzb&, PtrStepSzb, int, int, float, int, cudaStream_t); } }}} ////////////////////////////////////////////////////////////////////////////////// //// Non Local Means Denosing (fast approximate version) namespace cv { namespace gpu { namespace device { namespace imgproc { template <int cn> struct Unroll; template <> struct Unroll<1> { template <int BLOCK_SIZE> static __device__ __forceinline__ thrust::tuple<volatile float*, volatile float*> smem_tuple(float* smem) { return cv::gpu::device::smem_tuple(smem, smem + BLOCK_SIZE); } static __device__ __forceinline__ thrust::tuple<float&, float&> tie(float& val1, float& val2) { return thrust::tie(val1, val2); } static __device__ __forceinline__ const thrust::tuple<plus<float>, plus<float> > op() { plus<float> op; return thrust::make_tuple(op, op); } }; template <> struct Unroll<2> { template <int BLOCK_SIZE> static __device__ __forceinline__ thrust::tuple<volatile float*, volatile float*, volatile float*> smem_tuple(float* smem) { return cv::gpu::device::smem_tuple(smem, smem + BLOCK_SIZE, smem + 2 * BLOCK_SIZE); } static __device__ __forceinline__ thrust::tuple<float&, float&, float&> tie(float& val1, float2& val2) { return thrust::tie(val1, val2.x, val2.y); } static __device__ __forceinline__ const thrust::tuple<plus<float>, plus<float>, plus<float> > op() { plus<float> op; return thrust::make_tuple(op, op, op); } }; template <> struct Unroll<3> { template <int BLOCK_SIZE> static __device__ __forceinline__ thrust::tuple<volatile float*, volatile float*, volatile float*, volatile float*> smem_tuple(float* smem) { return cv::gpu::device::smem_tuple(smem, smem + BLOCK_SIZE, smem + 2 * BLOCK_SIZE, smem + 3 * BLOCK_SIZE); } static __device__ __forceinline__ thrust::tuple<float&, float&, float&, float&> tie(float& val1, float3& val2) { return thrust::tie(val1, val2.x, val2.y, val2.z); } static __device__ __forceinline__ const thrust::tuple<plus<float>, plus<float>, plus<float>, plus<float> > op() { plus<float> op; return thrust::make_tuple(op, op, op, op); } }; template <> struct Unroll<4> { template <int BLOCK_SIZE> static __device__ __forceinline__ thrust::tuple<volatile float*, volatile float*, volatile float*, volatile float*, volatile float*> smem_tuple(float* smem) { return cv::gpu::device::smem_tuple(smem, smem + BLOCK_SIZE, smem + 2 * BLOCK_SIZE, smem + 3 * BLOCK_SIZE, smem + 4 * BLOCK_SIZE); } static __device__ __forceinline__ thrust::tuple<float&, float&, float&, float&, float&> tie(float& val1, float4& val2) { return thrust::tie(val1, val2.x, val2.y, val2.z, val2.w); } static __device__ __forceinline__ const thrust::tuple<plus<float>, plus<float>, plus<float>, plus<float>, plus<float> > op() { plus<float> op; return thrust::make_tuple(op, op, op, op, op); } }; __device__ __forceinline__ int calcDist(const uchar& a, const uchar& b) { return (a-b)*(a-b); } __device__ __forceinline__ int calcDist(const uchar2& a, const uchar2& b) { return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y); } __device__ __forceinline__ int calcDist(const uchar3& a, const uchar3& b) { return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) + (a.z-b.z)*(a.z-b.z); } template <class T> struct FastNonLocalMeans { enum { CTA_SIZE = 128, TILE_COLS = 128, TILE_ROWS = 32, STRIDE = CTA_SIZE }; struct plus { __device__ __forceinline__ float operator()(float v1, float v2) const { return v1 + v2; } }; int search_radius; int block_radius; int search_window; int block_window; float minus_h2_inv; FastNonLocalMeans(int search_window_, int block_window_, float h) : search_radius(search_window_/2), block_radius(block_window_/2), search_window(search_window_), block_window(block_window_), minus_h2_inv(-1.f/(h * h * VecTraits<T>::cn)) {} PtrStep<T> src; mutable PtrStepi buffer; __device__ __forceinline__ void initSums_BruteForce(int i, int j, int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums) const { for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE) { dist_sums[index] = 0; for(int tx = 0; tx < block_window; ++tx) col_sums(tx, index) = 0; int y = index / search_window; int x = index - y * search_window; int ay = i; int ax = j; int by = i + y - search_radius; int bx = j + x - search_radius; #if 1 for (int tx = -block_radius; tx <= block_radius; ++tx) { int col_sum = 0; for (int ty = -block_radius; ty <= block_radius; ++ty) { int dist = calcDist(src(ay + ty, ax + tx), src(by + ty, bx + tx)); dist_sums[index] += dist; col_sum += dist; } col_sums(tx + block_radius, index) = col_sum; } #else for (int ty = -block_radius; ty <= block_radius; ++ty) for (int tx = -block_radius; tx <= block_radius; ++tx) { int dist = calcDist(src(ay + ty, ax + tx), src(by + ty, bx + tx)); dist_sums[index] += dist; col_sums(tx + block_radius, index) += dist; } #endif up_col_sums(j, index) = col_sums(block_window - 1, index); } } __device__ __forceinline__ void shiftRight_FirstRow(int i, int j, int first, int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums) const { for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE) { int y = index / search_window; int x = index - y * search_window; int ay = i; int ax = j + block_radius; int by = i + y - search_radius; int bx = j + x - search_radius + block_radius; int col_sum = 0; for (int ty = -block_radius; ty <= block_radius; ++ty) col_sum += calcDist(src(ay + ty, ax), src(by + ty, bx)); dist_sums[index] += col_sum - col_sums(first, index); col_sums(first, index) = col_sum; up_col_sums(j, index) = col_sum; } } __device__ __forceinline__ void shiftRight_UpSums(int i, int j, int first, int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums) const { int ay = i; int ax = j + block_radius; T a_up = src(ay - block_radius - 1, ax); T a_down = src(ay + block_radius, ax); for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE) { int y = index / search_window; int x = index - y * search_window; int by = i + y - search_radius; int bx = j + x - search_radius + block_radius; T b_up = src(by - block_radius - 1, bx); T b_down = src(by + block_radius, bx); int col_sum = up_col_sums(j, index) + calcDist(a_down, b_down) - calcDist(a_up, b_up); dist_sums[index] += col_sum - col_sums(first, index); col_sums(first, index) = col_sum; up_col_sums(j, index) = col_sum; } } __device__ __forceinline__ void convolve_window(int i, int j, const int* dist_sums, T& dst) const { typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type sum_type; float weights_sum = 0; sum_type sum = VecTraits<sum_type>::all(0); float bw2_inv = 1.f/(block_window * block_window); int sx = j - search_radius; int sy = i - search_radius; for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE) { int y = index / search_window; int x = index - y * search_window; float avg_dist = dist_sums[index] * bw2_inv; float weight = __expf(avg_dist * minus_h2_inv); weights_sum += weight; sum = sum + weight * saturate_cast<sum_type>(src(sy + y, sx + x)); } __shared__ float cta_buffer[CTA_SIZE * (VecTraits<T>::cn + 1)]; reduce<CTA_SIZE>(Unroll<VecTraits<T>::cn>::template smem_tuple<CTA_SIZE>(cta_buffer), Unroll<VecTraits<T>::cn>::tie(weights_sum, sum), threadIdx.x, Unroll<VecTraits<T>::cn>::op()); if (threadIdx.x == 0) dst = saturate_cast<T>(sum / weights_sum); } __device__ __forceinline__ void operator()(PtrStepSz<T>& dst) const { int tbx = blockIdx.x * TILE_COLS; int tby = blockIdx.y * TILE_ROWS; int tex = ::min(tbx + TILE_COLS, dst.cols); int tey = ::min(tby + TILE_ROWS, dst.rows); PtrStepi col_sums; col_sums.data = buffer.ptr(dst.cols + blockIdx.x * block_window) + blockIdx.y * search_window * search_window; col_sums.step = buffer.step; PtrStepi up_col_sums; up_col_sums.data = buffer.data + blockIdx.y * search_window * search_window; up_col_sums.step = buffer.step; extern __shared__ int dist_sums[]; //search_window * search_window int first = 0; for (int i = tby; i < tey; ++i) for (int j = tbx; j < tex; ++j) { __syncthreads(); if (j == tbx) { initSums_BruteForce(i, j, dist_sums, col_sums, up_col_sums); first = 0; } else { if (i == tby) shiftRight_FirstRow(i, j, first, dist_sums, col_sums, up_col_sums); else shiftRight_UpSums(i, j, first, dist_sums, col_sums, up_col_sums); first = (first + 1) % block_window; } __syncthreads(); convolve_window(i, j, dist_sums, dst(i, j)); } } }; template<typename T> __global__ void fast_nlm_kernel(const FastNonLocalMeans<T> fnlm, PtrStepSz<T> dst) { fnlm(dst); } void nln_fast_get_buffer_size(const PtrStepSzb& src, int search_window, int block_window, int& buffer_cols, int& buffer_rows) { typedef FastNonLocalMeans<uchar> FNLM; dim3 grid(divUp(src.cols, FNLM::TILE_COLS), divUp(src.rows, FNLM::TILE_ROWS)); buffer_cols = search_window * search_window * grid.y; buffer_rows = src.cols + block_window * grid.x; } template<typename T> void nlm_fast_gpu(const PtrStepSzb& src, PtrStepSzb dst, PtrStepi buffer, int search_window, int block_window, float h, cudaStream_t stream) { typedef FastNonLocalMeans<T> FNLM; FNLM fnlm(search_window, block_window, h); fnlm.src = (PtrStepSz<T>)src; fnlm.buffer = buffer; dim3 block(FNLM::CTA_SIZE, 1); dim3 grid(divUp(src.cols, FNLM::TILE_COLS), divUp(src.rows, FNLM::TILE_ROWS)); int smem = search_window * search_window * sizeof(int); fast_nlm_kernel<<<grid, block, smem>>>(fnlm, (PtrStepSz<T>)dst); cudaSafeCall ( cudaGetLastError () ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template void nlm_fast_gpu<uchar>(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t); template void nlm_fast_gpu<uchar2>(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t); template void nlm_fast_gpu<uchar3>(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t); __global__ void fnlm_split_kernel(const PtrStepSz<uchar3> lab, PtrStepb l, PtrStep<uchar2> ab) { int x = threadIdx.x + blockIdx.x * blockDim.x; int y = threadIdx.y + blockIdx.y * blockDim.y; if (x < lab.cols && y < lab.rows) { uchar3 p = lab(y, x); ab(y,x) = make_uchar2(p.y, p.z); l(y,x) = p.x; } } void fnlm_split_channels(const PtrStepSz<uchar3>& lab, PtrStepb l, PtrStep<uchar2> ab, cudaStream_t stream) { dim3 b(32, 8); dim3 g(divUp(lab.cols, b.x), divUp(lab.rows, b.y)); fnlm_split_kernel<<<g, b>>>(lab, l, ab); cudaSafeCall ( cudaGetLastError () ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } __global__ void fnlm_merge_kernel(const PtrStepb l, const PtrStep<uchar2> ab, PtrStepSz<uchar3> lab) { int x = threadIdx.x + blockIdx.x * blockDim.x; int y = threadIdx.y + blockIdx.y * blockDim.y; if (x < lab.cols && y < lab.rows) { uchar2 p = ab(y, x); lab(y, x) = make_uchar3(l(y, x), p.x, p.y); } } void fnlm_merge_channels(const PtrStepb& l, const PtrStep<uchar2>& ab, PtrStepSz<uchar3> lab, cudaStream_t stream) { dim3 b(32, 8); dim3 g(divUp(lab.cols, b.x), divUp(lab.rows, b.y)); fnlm_merge_kernel<<<g, b>>>(l, ab, lab); cudaSafeCall ( cudaGetLastError () ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } } }}} #endif /* CUDA_DISABLER */