/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // This file originates from the openFABMAP project: // [http://code.google.com/p/openfabmap/] // // For published work which uses all or part of OpenFABMAP, please cite: // [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6224843] // // Original Algorithm by Mark Cummins and Paul Newman: // [http://ijr.sagepub.com/content/27/6/647.short] // [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5613942] // [http://ijr.sagepub.com/content/30/9/1100.abstract] // // License Agreement // // Copyright (C) 2012 Arren Glover [aj.glover@qut.edu.au] and // Will Maddern [w.maddern@qut.edu.au], all rights reserved. // // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/contrib/openfabmap.hpp" namespace cv { namespace of2 { BOWMSCTrainer::BOWMSCTrainer(double _clusterSize) : clusterSize(_clusterSize) { } BOWMSCTrainer::~BOWMSCTrainer() { } Mat BOWMSCTrainer::cluster() const { CV_Assert(!descriptors.empty()); int descCount = 0; for(size_t i = 0; i < descriptors.size(); i++) descCount += descriptors[i].rows; Mat mergedDescriptors(descCount, descriptors[0].cols, descriptors[0].type()); for(size_t i = 0, start = 0; i < descriptors.size(); i++) { Mat submut = mergedDescriptors.rowRange((int)start, (int)(start + descriptors[i].rows)); descriptors[i].copyTo(submut); start += descriptors[i].rows; } return cluster(mergedDescriptors); } Mat BOWMSCTrainer::cluster(const Mat& _descriptors) const { CV_Assert(!_descriptors.empty()); // TODO: sort the descriptors before clustering. Mat icovar = Mat::eye(_descriptors.cols,_descriptors.cols,_descriptors.type()); vector<Mat> initialCentres; initialCentres.push_back(_descriptors.row(0)); for (int i = 1; i < _descriptors.rows; i++) { double minDist = DBL_MAX; for (size_t j = 0; j < initialCentres.size(); j++) { minDist = std::min(minDist, cv::Mahalanobis(_descriptors.row(i),initialCentres[j], icovar)); } if (minDist > clusterSize) initialCentres.push_back(_descriptors.row(i)); } std::vector<std::list<cv::Mat> > clusters; clusters.resize(initialCentres.size()); for (int i = 0; i < _descriptors.rows; i++) { int index = 0; double dist = 0, minDist = DBL_MAX; for (size_t j = 0; j < initialCentres.size(); j++) { dist = cv::Mahalanobis(_descriptors.row(i),initialCentres[j],icovar); if (dist < minDist) { minDist = dist; index = (int)j; } } clusters[index].push_back(_descriptors.row(i)); } // TODO: throw away small clusters. Mat vocabulary; Mat centre = Mat::zeros(1,_descriptors.cols,_descriptors.type()); for (size_t i = 0; i < clusters.size(); i++) { centre.setTo(0); for (std::list<cv::Mat>::iterator Ci = clusters[i].begin(); Ci != clusters[i].end(); Ci++) { centre += *Ci; } centre /= (double)clusters[i].size(); vocabulary.push_back(centre); } return vocabulary; } } }