/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Jia Haipeng, jiahaipeng95@gmail.com // Peng Xiao, pengxiao@outlook.com // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencl_kernels.hpp" using namespace cv; using namespace cv::ocl; namespace cv { namespace ocl { namespace stereoBP { ////////////////////////////////////////////////////////////////////////// //////////////////////////////common//////////////////////////////////// //////////////////////////////////////////////////////////////////////// typedef struct { int cndisp; float cmax_data_term; float cdata_weight; float cmax_disc_term; float cdisc_single_jump; } con_struct_t; cl_mem cl_con_struct = NULL; static void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump) { con_struct_t *con_struct = new con_struct_t; con_struct -> cndisp = ndisp; con_struct -> cmax_data_term = max_data_term; con_struct -> cdata_weight = data_weight; con_struct -> cmax_disc_term = max_disc_term; con_struct -> cdisc_single_jump = disc_single_jump; Context* clCtx = Context::getContext(); cl_context clContext = *(cl_context*)(clCtx->getOpenCLContextPtr()); cl_command_queue clCmdQueue = *(cl_command_queue*)(clCtx->getOpenCLCommandQueuePtr()); cl_con_struct = load_constant(clContext, clCmdQueue, (void *)con_struct, sizeof(con_struct_t)); delete con_struct; } static void release_constants() { openCLFree(cl_con_struct); } ///////////////////////////////////////////////////////////////////////////// ///////////////////////////comp data//////////////////////////////////////// ///////////////////////////////////////////////////////////////////////// static void comp_data_call(const oclMat &left, const oclMat &right, oclMat &data, int /*disp*/, float /*cmax_data_term*/, float /*cdata_weight*/) { Context *clCxt = left.clCxt; int channels = left.oclchannels(); int data_type = data.type(); string kernelName = "comp_data"; vector<pair<size_t , const void *> > args; args.push_back( make_pair( sizeof(cl_mem) , (void *)&left.data)); args.push_back( make_pair( sizeof(cl_int) , (void *)&left.rows)); args.push_back( make_pair( sizeof(cl_int) , (void *)&left.cols)); args.push_back( make_pair( sizeof(cl_int) , (void *)&left.step)); args.push_back( make_pair( sizeof(cl_mem) , (void *)&right.data)); args.push_back( make_pair( sizeof(cl_int) , (void *)&right.step)); args.push_back( make_pair( sizeof(cl_mem) , (void *)&data.data)); args.push_back( make_pair( sizeof(cl_int) , (void *)&data.step)); args.push_back( make_pair( sizeof(cl_mem) , (void *)&cl_con_struct)); size_t gt[3] = {(size_t)left.cols, (size_t)left.rows, 1}, lt[3] = {16, 16, 1}; const int OPT_SIZE = 50; char cn_opt [OPT_SIZE] = ""; sprintf( cn_opt, "%s -D CN=%d", (data_type == CV_16S ? "-D T_SHORT":"-D T_FLOAT"), channels ); openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, cn_opt); } /////////////////////////////////////////////////////////////////////////////////// /////////////////////////data set down//////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////// static void data_step_down_call(int dst_cols, int dst_rows, int src_rows, const oclMat &src, oclMat &dst, int disp) { Context *clCxt = src.clCxt; int data_type = src.type(); string kernelName = "data_step_down"; vector<pair<size_t , const void *> > args; args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data)); args.push_back( make_pair( sizeof(cl_int) , (void *)&src_rows)); args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data)); args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_rows)); args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_cols)); args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step)); args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.step)); args.push_back( make_pair( sizeof(cl_int) , (void *)&disp)); size_t gt[3] = {(size_t)dst_cols, (size_t)dst_rows, 1}, lt[3] = {16, 16, 1}; const char* t_opt = data_type == CV_16S ? "-D T_SHORT":"-D T_FLOAT"; openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, t_opt); } ///////////////////////////////////////////////////////////////////////////////// ///////////////////////////live up message//////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////// static void level_up_message_call(int dst_cols, int dst_rows, int src_rows, oclMat &src, oclMat &dst, int ndisp) { Context *clCxt = src.clCxt; int data_type = src.type(); string kernelName = "level_up_message"; vector<pair<size_t , const void *> > args; args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data)); args.push_back( make_pair( sizeof(cl_int) , (void *)&src_rows)); args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step)); args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data)); args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_rows)); args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_cols)); args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.step)); args.push_back( make_pair( sizeof(cl_int) , (void *)&ndisp)); size_t gt[3] = {(size_t)dst_cols, (size_t)dst_rows, 1}, lt[3] = {16, 16, 1}; const char* t_opt = data_type == CV_16S ? "-D T_SHORT":"-D T_FLOAT"; openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, t_opt); } static void level_up_messages_calls(int dst_idx, int dst_cols, int dst_rows, int src_rows, oclMat *mus, oclMat *mds, oclMat *mls, oclMat *mrs, int ndisp) { int src_idx = (dst_idx + 1) & 1; level_up_message_call(dst_cols, dst_rows, src_rows, mus[src_idx], mus[dst_idx], ndisp); level_up_message_call(dst_cols, dst_rows, src_rows, mds[src_idx], mds[dst_idx], ndisp); level_up_message_call(dst_cols, dst_rows, src_rows, mls[src_idx], mls[dst_idx], ndisp); level_up_message_call(dst_cols, dst_rows, src_rows, mrs[src_idx], mrs[dst_idx], ndisp); } ////////////////////////////////////////////////////////////////////////////////// //////////////////////////////cals_all_iterations_call/////////////////////////// ///////////////////////////////////////////////////////////////////////////////// static void calc_all_iterations_call(int cols, int rows, oclMat &u, oclMat &d, oclMat &l, oclMat &r, oclMat &data, int t, int cndisp, float cmax_disc_term, float cdisc_single_jump) { Context *clCxt = l.clCxt; int data_type = u.type(); string kernelName = "one_iteration"; vector<pair<size_t , const void *> > args; args.push_back( make_pair( sizeof(cl_mem) , (void *)&u.data)); args.push_back( make_pair( sizeof(cl_int) , (void *)&u.step)); args.push_back( make_pair( sizeof(cl_mem) , (void *)&data.data)); args.push_back( make_pair( sizeof(cl_int) , (void *)&data.step)); args.push_back( make_pair( sizeof(cl_mem) , (void *)&d.data)); args.push_back( make_pair( sizeof(cl_mem) , (void *)&l.data)); args.push_back( make_pair( sizeof(cl_mem) , (void *)&r.data)); args.push_back( make_pair( sizeof(cl_int) , (void *)&t)); args.push_back( make_pair( sizeof(cl_int) , (void *)&cols)); args.push_back( make_pair( sizeof(cl_int) , (void *)&rows)); args.push_back( make_pair( sizeof(cl_float) , (void *)&cmax_disc_term)); args.push_back( make_pair( sizeof(cl_float) , (void *)&cdisc_single_jump)); size_t gt[3] = {(size_t)cols, (size_t)rows, 1}, lt[3] = {16, 16, 1}; char opt[80] = ""; sprintf(opt, "-D %s -D CNDISP=%d", data_type == CV_16S ? "T_SHORT":"T_FLOAT", cndisp); openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, opt); } static void calc_all_iterations_calls(int cols, int rows, int iters, oclMat &u, oclMat &d, oclMat &l, oclMat &r, oclMat &data, int cndisp, float cmax_disc_term, float cdisc_single_jump) { for(int t = 0; t < iters; ++t) calc_all_iterations_call(cols, rows, u, d, l, r, data, t, cndisp, cmax_disc_term, cdisc_single_jump); } /////////////////////////////////////////////////////////////////////////////// ///////////////////////output/////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// static void output_call(const oclMat &u, const oclMat &d, const oclMat l, const oclMat &r, const oclMat &data, oclMat &disp, int ndisp) { Context *clCxt = u.clCxt; int data_type = u.type(); string kernelName = "output"; vector<pair<size_t , const void *> > args; args.push_back( make_pair( sizeof(cl_mem) , (void *)&u.data)); args.push_back( make_pair( sizeof(cl_int) , (void *)&u.step)); args.push_back( make_pair( sizeof(cl_mem) , (void *)&d.data)); args.push_back( make_pair( sizeof(cl_mem) , (void *)&l.data)); args.push_back( make_pair( sizeof(cl_mem) , (void *)&r.data)); args.push_back( make_pair( sizeof(cl_mem) , (void *)&data.data)); args.push_back( make_pair( sizeof(cl_mem) , (void *)&disp.data)); args.push_back( make_pair( sizeof(cl_int) , (void *)&disp.rows)); args.push_back( make_pair( sizeof(cl_int) , (void *)&disp.cols)); args.push_back( make_pair( sizeof(cl_int) , (void *)&disp.step)); args.push_back( make_pair( sizeof(cl_int) , (void *)&ndisp)); size_t gt[3] = {(size_t)disp.cols, (size_t)disp.rows, 1}, lt[3] = {16, 16, 1}; const char* t_opt = data_type == CV_16S ? "-D T_SHORT":"-D T_FLOAT"; openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, t_opt); } } } } namespace { const float DEFAULT_MAX_DATA_TERM = 10.0f; const float DEFAULT_DATA_WEIGHT = 0.07f; const float DEFAULT_MAX_DISC_TERM = 1.7f; const float DEFAULT_DISC_SINGLE_JUMP = 1.0f; } void cv::ocl::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int &ndisp, int &iters, int &levels) { ndisp = width / 4; if ((ndisp & 1) != 0) ndisp++; int mm = ::max(width, height); iters = mm / 100 + 2; levels = (int)(::log(static_cast<double>(mm)) + 1) * 4 / 5; if (levels == 0) levels++; } cv::ocl::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, int msg_type_) : ndisp(ndisp_), iters(iters_), levels(levels_), max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT), max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP), msg_type(msg_type_), datas(levels_) { } cv::ocl::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_, int msg_type_) : ndisp(ndisp_), iters(iters_), levels(levels_), max_data_term(max_data_term_), data_weight(data_weight_), max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_), msg_type(msg_type_), datas(levels_) { } namespace { class StereoBeliefPropagationImpl { public: StereoBeliefPropagationImpl(StereoBeliefPropagation &rthis_, oclMat &u_, oclMat &d_, oclMat &l_, oclMat &r_, oclMat &u2_, oclMat &d2_, oclMat &l2_, oclMat &r2_, vector<oclMat> &datas_, oclMat &out_) : rthis(rthis_), u(u_), d(d_), l(l_), r(r_), u2(u2_), d2(d2_), l2(l2_), r2(r2_), datas(datas_), out(out_), zero(Scalar::all(0)), scale(rthis_.msg_type == CV_32F ? 1.0f : 10.0f) { CV_Assert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels); CV_Assert(rthis.msg_type == CV_32F || rthis.msg_type == CV_16S); CV_Assert(rthis.msg_type == CV_32F || (1 << (rthis.levels - 1)) * scale * rthis.max_data_term < numeric_limits<short>::max()); } void operator()(const oclMat &left, const oclMat &right, oclMat &disp) { CV_Assert(left.size() == right.size() && left.type() == right.type()); CV_Assert(left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4); rows = left.rows; cols = left.cols; int divisor = (int)pow(2.f, rthis.levels - 1.0f); int lowest_cols = cols / divisor; int lowest_rows = rows / divisor; const int min_image_dim_size = 2; CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size); init(); datas[0].create(rows * rthis.ndisp, cols, rthis.msg_type); datas[0].setTo(Scalar_<short>::all(0)); cv::ocl::stereoBP::comp_data_call(left, right, datas[0], rthis.ndisp, rthis.max_data_term, scale * rthis.data_weight); calcBP(disp); } void operator()(const oclMat &data, oclMat &disp) { CV_Assert((data.type() == rthis.msg_type) && (data.rows % rthis.ndisp == 0)); rows = data.rows / rthis.ndisp; cols = data.cols; int divisor = (int)pow(2.f, rthis.levels - 1.0f); int lowest_cols = cols / divisor; int lowest_rows = rows / divisor; const int min_image_dim_size = 2; CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size); init(); datas[0] = data; calcBP(disp); } private: void init() { u.create(rows * rthis.ndisp, cols, rthis.msg_type); d.create(rows * rthis.ndisp, cols, rthis.msg_type); l.create(rows * rthis.ndisp, cols, rthis.msg_type); r.create(rows * rthis.ndisp, cols, rthis.msg_type); if (rthis.levels & 1) { //can clear less area u = zero; d = zero; l = zero; r = zero; } if (rthis.levels > 1) { int less_rows = (rows + 1) / 2; int less_cols = (cols + 1) / 2; u2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); d2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); l2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); r2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); if ((rthis.levels & 1) == 0) { u2 = zero; d2 = zero; l2 = zero; r2 = zero; } } cv::ocl::stereoBP::load_constants(rthis.ndisp, rthis.max_data_term, scale * rthis.data_weight, scale * rthis.max_disc_term, scale * rthis.disc_single_jump); datas.resize(rthis.levels); cols_all.resize(rthis.levels); rows_all.resize(rthis.levels); cols_all[0] = cols; rows_all[0] = rows; } void calcBP(oclMat &disp) { using namespace cv::ocl::stereoBP; for (int i = 1; i < rthis.levels; ++i) { cols_all[i] = (cols_all[i - 1] + 1) / 2; rows_all[i] = (rows_all[i - 1] + 1) / 2; datas[i].create(rows_all[i] * rthis.ndisp, cols_all[i], rthis.msg_type); datas[i].setTo(Scalar_<short>::all(0)); data_step_down_call(cols_all[i], rows_all[i], rows_all[i - 1], datas[i - 1], datas[i], rthis.ndisp); } oclMat mus[] = {u, u2}; oclMat mds[] = {d, d2}; oclMat mrs[] = {r, r2}; oclMat mls[] = {l, l2}; int mem_idx = (rthis.levels & 1) ? 0 : 1; for (int i = rthis.levels - 1; i >= 0; --i) { // for lower level we have already computed messages by setting to zero if (i != rthis.levels - 1) level_up_messages_calls(mem_idx, cols_all[i], rows_all[i], rows_all[i + 1], mus, mds, mls, mrs, rthis.ndisp); calc_all_iterations_calls(cols_all[i], rows_all[i], rthis.iters, mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas[i], rthis.ndisp, scale * rthis.max_disc_term, scale * rthis.disc_single_jump); mem_idx = (mem_idx + 1) & 1; } if (disp.empty()) disp.create(rows, cols, CV_16S); out = ((disp.type() == CV_16S) ? disp : (out.create(rows, cols, CV_16S), out)); out = zero; output_call(u, d, l, r, datas.front(), out, rthis.ndisp); if (disp.type() != CV_16S) out.convertTo(disp, disp.type()); release_constants(); } StereoBeliefPropagationImpl& operator=(const StereoBeliefPropagationImpl&); StereoBeliefPropagation &rthis; oclMat &u; oclMat &d; oclMat &l; oclMat &r; oclMat &u2; oclMat &d2; oclMat &l2; oclMat &r2; vector<oclMat> &datas; oclMat &out; const Scalar zero; const float scale; int rows, cols; vector<int> cols_all, rows_all; }; } void cv::ocl::StereoBeliefPropagation::operator()(const oclMat &left, const oclMat &right, oclMat &disp) { ::StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out); impl(left, right, disp); } void cv::ocl::StereoBeliefPropagation::operator()(const oclMat &data, oclMat &disp) { ::StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out); impl(data, disp); }