#include <iostream> #include <vector> #include <iomanip> #include "opencv2/highgui/highgui.hpp" #include "opencv2/ocl/ocl.hpp" #include "opencv2/video/video.hpp" using namespace std; using namespace cv; using namespace cv::ocl; typedef unsigned char uchar; #define LOOP_NUM 10 int64 work_begin = 0; int64 work_end = 0; static void workBegin() { work_begin = getTickCount(); } static void workEnd() { work_end += (getTickCount() - work_begin); } static double getTime() { return work_end * 1000. / getTickFrequency(); } static void download(const oclMat& d_mat, vector<Point2f>& vec) { vec.clear(); vec.resize(d_mat.cols); Mat mat(1, d_mat.cols, CV_32FC2, (void*)&vec[0]); d_mat.download(mat); } static void download(const oclMat& d_mat, vector<uchar>& vec) { vec.clear(); vec.resize(d_mat.cols); Mat mat(1, d_mat.cols, CV_8UC1, (void*)&vec[0]); d_mat.download(mat); } static void drawArrows(Mat& frame, const vector<Point2f>& prevPts, const vector<Point2f>& nextPts, const vector<uchar>& status, Scalar line_color = Scalar(0, 0, 255)) { for (size_t i = 0; i < prevPts.size(); ++i) { if (status[i]) { int line_thickness = 1; Point p = prevPts[i]; Point q = nextPts[i]; double angle = atan2((double) p.y - q.y, (double) p.x - q.x); double hypotenuse = sqrt( (double)(p.y - q.y)*(p.y - q.y) + (double)(p.x - q.x)*(p.x - q.x) ); if (hypotenuse < 1.0) continue; // Here we lengthen the arrow by a factor of three. q.x = (int) (p.x - 3 * hypotenuse * cos(angle)); q.y = (int) (p.y - 3 * hypotenuse * sin(angle)); // Now we draw the main line of the arrow. line(frame, p, q, line_color, line_thickness); // Now draw the tips of the arrow. I do some scaling so that the // tips look proportional to the main line of the arrow. p.x = (int) (q.x + 9 * cos(angle + CV_PI / 4)); p.y = (int) (q.y + 9 * sin(angle + CV_PI / 4)); line(frame, p, q, line_color, line_thickness); p.x = (int) (q.x + 9 * cos(angle - CV_PI / 4)); p.y = (int) (q.y + 9 * sin(angle - CV_PI / 4)); line(frame, p, q, line_color, line_thickness); } } } int main(int argc, const char* argv[]) { const char* keys = "{ h | help | false | print help message }" "{ l | left | | specify left image }" "{ r | right | | specify right image }" "{ c | camera | 0 | specify camera id }" "{ s | use_cpu | false | use cpu or gpu to process the image }" "{ v | video | | use video as input }" "{ o | output | pyrlk_output.jpg| specify output save path when input is images }" "{ p | points | 1000 | specify points count [GoodFeatureToTrack] }" "{ m | min_dist | 0 | specify minimal distance between points [GoodFeatureToTrack] }"; CommandLineParser cmd(argc, argv, keys); if (cmd.get<bool>("help")) { cout << "Usage: pyrlk_optical_flow [options]" << endl; cout << "Available options:" << endl; cmd.printParams(); return EXIT_SUCCESS; } bool defaultPicturesFail = false; string fname0 = cmd.get<string>("l"); string fname1 = cmd.get<string>("r"); string vdofile = cmd.get<string>("v"); string outfile = cmd.get<string>("o"); int points = cmd.get<int>("p"); double minDist = cmd.get<double>("m"); bool useCPU = cmd.get<bool>("s"); int inputName = cmd.get<int>("c"); oclMat d_nextPts, d_status; GoodFeaturesToTrackDetector_OCL d_features(points); Mat frame0 = imread(fname0, cv::IMREAD_GRAYSCALE); Mat frame1 = imread(fname1, cv::IMREAD_GRAYSCALE); PyrLKOpticalFlow d_pyrLK; vector<cv::Point2f> pts(points); vector<cv::Point2f> nextPts(points); vector<unsigned char> status(points); vector<float> err; cout << "Points count : " << points << endl << endl; if (frame0.empty() || frame1.empty()) { CvCapture* capture = 0; Mat frame, frameCopy; Mat frame0Gray, frame1Gray; Mat ptr0, ptr1; if(vdofile.empty()) capture = cvCaptureFromCAM( inputName ); else capture = cvCreateFileCapture(vdofile.c_str()); int c = inputName ; if(!capture) { if(vdofile.empty()) cout << "Capture from CAM " << c << " didn't work" << endl; else cout << "Capture from file " << vdofile << " failed" <<endl; if (defaultPicturesFail) return EXIT_FAILURE; goto nocamera; } cout << "In capture ..." << endl; for(int i = 0;; i++) { frame = cvQueryFrame( capture ); if( frame.empty() ) break; if (i == 0) { frame.copyTo( frame0 ); cvtColor(frame0, frame0Gray, COLOR_BGR2GRAY); } else { if (i%2 == 1) { frame.copyTo(frame1); cvtColor(frame1, frame1Gray, COLOR_BGR2GRAY); ptr0 = frame0Gray; ptr1 = frame1Gray; } else { frame.copyTo(frame0); cvtColor(frame0, frame0Gray, COLOR_BGR2GRAY); ptr0 = frame1Gray; ptr1 = frame0Gray; } if (useCPU) { pts.clear(); goodFeaturesToTrack(ptr0, pts, points, 0.01, 0.0); if(pts.size() == 0) continue; calcOpticalFlowPyrLK(ptr0, ptr1, pts, nextPts, status, err); } else { oclMat d_img(ptr0), d_prevPts; d_features(d_img, d_prevPts); if(!d_prevPts.rows || !d_prevPts.cols) continue; d_pyrLK.sparse(d_img, oclMat(ptr1), d_prevPts, d_nextPts, d_status); d_features.downloadPoints(d_prevPts,pts); download(d_nextPts, nextPts); download(d_status, status); } if (i%2 == 1) frame1.copyTo(frameCopy); else frame0.copyTo(frameCopy); drawArrows(frameCopy, pts, nextPts, status, Scalar(255, 0, 0)); imshow("PyrLK [Sparse]", frameCopy); } if( waitKey( 10 ) >= 0 ) break; } cvReleaseCapture( &capture ); } else { nocamera: for(int i = 0; i <= LOOP_NUM; i ++) { cout << "loop" << i << endl; if (i > 0) workBegin(); if (useCPU) { goodFeaturesToTrack(frame0, pts, points, 0.01, minDist); calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err); } else { oclMat d_img(frame0), d_prevPts; d_features(d_img, d_prevPts); d_pyrLK.sparse(d_img, oclMat(frame1), d_prevPts, d_nextPts, d_status); d_features.downloadPoints(d_prevPts, pts); download(d_nextPts, nextPts); download(d_status, status); } if (i > 0 && i <= LOOP_NUM) workEnd(); if (i == LOOP_NUM) { if (useCPU) cout << "average CPU time (noCamera) : "; else cout << "average GPU time (noCamera) : "; cout << getTime() / LOOP_NUM << " ms" << endl; drawArrows(frame0, pts, nextPts, status, Scalar(255, 0, 0)); imshow("PyrLK [Sparse]", frame0); imwrite(outfile, frame0); } } } waitKey(); return EXIT_SUCCESS; }