/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#if !defined CUDA_DISABLER

#include "internal_shared.hpp"

namespace cv { namespace gpu { namespace device
{
    namespace stereobm
    {
        //////////////////////////////////////////////////////////////////////////////////////////////////
        /////////////////////////////////////// Stereo BM ////////////////////////////////////////////////
        //////////////////////////////////////////////////////////////////////////////////////////////////

        #define ROWSperTHREAD 21     // the number of rows a thread will process

        #define BLOCK_W 128          // the thread block width (464)
        #define N_DISPARITIES 8

        #define STEREO_MIND 0                    // The minimum d range to check
        #define STEREO_DISP_STEP N_DISPARITIES   // the d step, must be <= 1 to avoid aliasing

        __constant__ unsigned int* cminSSDImage;
        __constant__ size_t cminSSD_step;
        __constant__ int cwidth;
        __constant__ int cheight;

        __device__ __forceinline__ int SQ(int a)
        {
            return a * a;
        }

        template<int RADIUS>
        __device__ unsigned int CalcSSD(volatile unsigned int *col_ssd_cache, volatile unsigned int *col_ssd)
        {
            unsigned int cache = 0;
            unsigned int cache2 = 0;

            for(int i = 1; i <= RADIUS; i++)
                cache += col_ssd[i];

            col_ssd_cache[0] = cache;

            __syncthreads();

            if (threadIdx.x < BLOCK_W - RADIUS)
                cache2 = col_ssd_cache[RADIUS];
            else
                for(int i = RADIUS + 1; i < (2 * RADIUS + 1); i++)
                    cache2 += col_ssd[i];

            return col_ssd[0] + cache + cache2;
        }

        template<int RADIUS>
        __device__ uint2 MinSSD(volatile unsigned int *col_ssd_cache, volatile unsigned int *col_ssd)
        {
            unsigned int ssd[N_DISPARITIES];

            //See above:  #define COL_SSD_SIZE (BLOCK_W + 2 * RADIUS)
            ssd[0] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 0 * (BLOCK_W + 2 * RADIUS));
            __syncthreads();
            ssd[1] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 1 * (BLOCK_W + 2 * RADIUS));
            __syncthreads();
            ssd[2] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 2 * (BLOCK_W + 2 * RADIUS));
            __syncthreads();
            ssd[3] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 3 * (BLOCK_W + 2 * RADIUS));
            __syncthreads();
            ssd[4] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 4 * (BLOCK_W + 2 * RADIUS));
            __syncthreads();
            ssd[5] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 5 * (BLOCK_W + 2 * RADIUS));
            __syncthreads();
            ssd[6] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 6 * (BLOCK_W + 2 * RADIUS));
            __syncthreads();
            ssd[7] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 7 * (BLOCK_W + 2 * RADIUS));

            int mssd = ::min(::min(::min(ssd[0], ssd[1]), ::min(ssd[4], ssd[5])), ::min(::min(ssd[2], ssd[3]), ::min(ssd[6], ssd[7])));

            int bestIdx = 0;
            for (int i = 0; i < N_DISPARITIES; i++)
            {
                if (mssd == ssd[i])
                    bestIdx = i;
            }

            return make_uint2(mssd, bestIdx);
        }

        template<int RADIUS>
        __device__ void StepDown(int idx1, int idx2, unsigned char* imageL, unsigned char* imageR, int d, volatile unsigned int *col_ssd)
        {
            unsigned char leftPixel1;
            unsigned char leftPixel2;
            unsigned char rightPixel1[8];
            unsigned char rightPixel2[8];
            unsigned int diff1, diff2;

            leftPixel1 = imageL[idx1];
            leftPixel2 = imageL[idx2];

            idx1 = idx1 - d;
            idx2 = idx2 - d;

            rightPixel1[7] = imageR[idx1 - 7];
            rightPixel1[0] = imageR[idx1 - 0];
            rightPixel1[1] = imageR[idx1 - 1];
            rightPixel1[2] = imageR[idx1 - 2];
            rightPixel1[3] = imageR[idx1 - 3];
            rightPixel1[4] = imageR[idx1 - 4];
            rightPixel1[5] = imageR[idx1 - 5];
            rightPixel1[6] = imageR[idx1 - 6];

            rightPixel2[7] = imageR[idx2 - 7];
            rightPixel2[0] = imageR[idx2 - 0];
            rightPixel2[1] = imageR[idx2 - 1];
            rightPixel2[2] = imageR[idx2 - 2];
            rightPixel2[3] = imageR[idx2 - 3];
            rightPixel2[4] = imageR[idx2 - 4];
            rightPixel2[5] = imageR[idx2 - 5];
            rightPixel2[6] = imageR[idx2 - 6];

            //See above:  #define COL_SSD_SIZE (BLOCK_W + 2 * RADIUS)
            diff1 = leftPixel1 - rightPixel1[0];
            diff2 = leftPixel2 - rightPixel2[0];
            col_ssd[0 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

            diff1 = leftPixel1 - rightPixel1[1];
            diff2 = leftPixel2 - rightPixel2[1];
            col_ssd[1 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

            diff1 = leftPixel1 - rightPixel1[2];
            diff2 = leftPixel2 - rightPixel2[2];
            col_ssd[2 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

            diff1 = leftPixel1 - rightPixel1[3];
            diff2 = leftPixel2 - rightPixel2[3];
            col_ssd[3 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

            diff1 = leftPixel1 - rightPixel1[4];
            diff2 = leftPixel2 - rightPixel2[4];
            col_ssd[4 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

            diff1 = leftPixel1 - rightPixel1[5];
            diff2 = leftPixel2 - rightPixel2[5];
            col_ssd[5 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

            diff1 = leftPixel1 - rightPixel1[6];
            diff2 = leftPixel2 - rightPixel2[6];
            col_ssd[6 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

            diff1 = leftPixel1 - rightPixel1[7];
            diff2 = leftPixel2 - rightPixel2[7];
            col_ssd[7 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);
        }

        template<int RADIUS>
        __device__ void InitColSSD(int x_tex, int y_tex, int im_pitch, unsigned char* imageL, unsigned char* imageR, int d, volatile unsigned int *col_ssd)
        {
            unsigned char leftPixel1;
            int idx;
            unsigned int diffa[] = {0, 0, 0, 0, 0, 0, 0, 0};

            for(int i = 0; i < (2 * RADIUS + 1); i++)
            {
                idx = y_tex * im_pitch + x_tex;
                leftPixel1 = imageL[idx];
                idx = idx - d;

                diffa[0] += SQ(leftPixel1 - imageR[idx - 0]);
                diffa[1] += SQ(leftPixel1 - imageR[idx - 1]);
                diffa[2] += SQ(leftPixel1 - imageR[idx - 2]);
                diffa[3] += SQ(leftPixel1 - imageR[idx - 3]);
                diffa[4] += SQ(leftPixel1 - imageR[idx - 4]);
                diffa[5] += SQ(leftPixel1 - imageR[idx - 5]);
                diffa[6] += SQ(leftPixel1 - imageR[idx - 6]);
                diffa[7] += SQ(leftPixel1 - imageR[idx - 7]);

                y_tex += 1;
            }
            //See above:  #define COL_SSD_SIZE (BLOCK_W + 2 * RADIUS)
            col_ssd[0 * (BLOCK_W + 2 * RADIUS)] = diffa[0];
            col_ssd[1 * (BLOCK_W + 2 * RADIUS)] = diffa[1];
            col_ssd[2 * (BLOCK_W + 2 * RADIUS)] = diffa[2];
            col_ssd[3 * (BLOCK_W + 2 * RADIUS)] = diffa[3];
            col_ssd[4 * (BLOCK_W + 2 * RADIUS)] = diffa[4];
            col_ssd[5 * (BLOCK_W + 2 * RADIUS)] = diffa[5];
            col_ssd[6 * (BLOCK_W + 2 * RADIUS)] = diffa[6];
            col_ssd[7 * (BLOCK_W + 2 * RADIUS)] = diffa[7];
        }

        template<int RADIUS>
        __global__ void stereoKernel(unsigned char *left, unsigned char *right, size_t img_step, PtrStepb disp, int maxdisp)
        {
            extern __shared__ unsigned int col_ssd_cache[];
            volatile unsigned int *col_ssd = col_ssd_cache + BLOCK_W + threadIdx.x;
            volatile unsigned int *col_ssd_extra = threadIdx.x < (2 * RADIUS) ? col_ssd + BLOCK_W : 0;  //#define N_DIRTY_PIXELS (2 * RADIUS)

            //#define X (blockIdx.x * BLOCK_W + threadIdx.x + STEREO_MAXD)
            int X = (blockIdx.x * BLOCK_W + threadIdx.x + maxdisp + RADIUS);
            //#define Y (__mul24(blockIdx.y, ROWSperTHREAD) + RADIUS)
            #define Y (blockIdx.y * ROWSperTHREAD + RADIUS)
            //int Y = blockIdx.y * ROWSperTHREAD + RADIUS;

            unsigned int* minSSDImage = cminSSDImage + X + Y * cminSSD_step;
            unsigned char* disparImage = disp.data + X + Y * disp.step;
         /*   if (X < cwidth)
            {
                unsigned int *minSSDImage_end = minSSDImage + min(ROWSperTHREAD, cheight - Y) * minssd_step;
                for(uint *ptr = minSSDImage; ptr != minSSDImage_end; ptr += minssd_step )
                    *ptr = 0xFFFFFFFF;
            }*/
            int end_row = ::min(ROWSperTHREAD, cheight - Y - RADIUS);
            int y_tex;
            int x_tex = X - RADIUS;

            if (x_tex >= cwidth)
                return;

            for(int d = STEREO_MIND; d < maxdisp; d += STEREO_DISP_STEP)
            {
                y_tex = Y - RADIUS;

                InitColSSD<RADIUS>(x_tex, y_tex, img_step, left, right, d, col_ssd);

                if (col_ssd_extra > 0)
                    if (x_tex + BLOCK_W < cwidth)
                        InitColSSD<RADIUS>(x_tex + BLOCK_W, y_tex, img_step, left, right, d, col_ssd_extra);

                __syncthreads(); //before MinSSD function

                if (X < cwidth - RADIUS && Y < cheight - RADIUS)
                {
                    uint2 minSSD = MinSSD<RADIUS>(col_ssd_cache + threadIdx.x, col_ssd);
                    if (minSSD.x < minSSDImage[0])
                    {
                        disparImage[0] = (unsigned char)(d + minSSD.y);
                        minSSDImage[0] = minSSD.x;
                    }
                }

                for(int row = 1; row < end_row; row++)
                {
                    int idx1 = y_tex * img_step + x_tex;
                    int idx2 = (y_tex + (2 * RADIUS + 1)) * img_step + x_tex;

                    __syncthreads();

                    StepDown<RADIUS>(idx1, idx2, left, right, d, col_ssd);

                    if (col_ssd_extra)
                        if (x_tex + BLOCK_W < cwidth)
                            StepDown<RADIUS>(idx1, idx2, left + BLOCK_W, right + BLOCK_W, d, col_ssd_extra);

                    y_tex += 1;

                    __syncthreads(); //before MinSSD function

                    if (X < cwidth - RADIUS && row < cheight - RADIUS - Y)
                    {
                        int idx = row * cminSSD_step;
                        uint2 minSSD = MinSSD<RADIUS>(col_ssd_cache + threadIdx.x, col_ssd);
                        if (minSSD.x < minSSDImage[idx])
                        {
                            disparImage[disp.step * row] = (unsigned char)(d + minSSD.y);
                            minSSDImage[idx] = minSSD.x;
                        }
                    }
                } // for row loop
            } // for d loop
        }


        template<int RADIUS> void kernel_caller(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& disp, int maxdisp, cudaStream_t & stream)
        {
            dim3 grid(1,1,1);
            dim3 threads(BLOCK_W, 1, 1);

            grid.x = divUp(left.cols - maxdisp - 2 * RADIUS, BLOCK_W);
            grid.y = divUp(left.rows - 2 * RADIUS, ROWSperTHREAD);

            //See above:  #define COL_SSD_SIZE (BLOCK_W + 2 * RADIUS)
            size_t smem_size = (BLOCK_W + N_DISPARITIES * (BLOCK_W + 2 * RADIUS)) * sizeof(unsigned int);

            stereoKernel<RADIUS><<<grid, threads, smem_size, stream>>>(left.data, right.data, left.step, disp, maxdisp);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        };

        typedef void (*kernel_caller_t)(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& disp, int maxdisp, cudaStream_t & stream);

#ifdef OPENCV_TINY_GPU_MODULE
        const static kernel_caller_t callers[] =
        {
            0,
            kernel_caller< 1>,
            kernel_caller< 2>,
            kernel_caller< 3>,
            kernel_caller< 4>,
            kernel_caller< 5>,
            0/*kernel_caller< 6>*/,
            0/*kernel_caller< 7>*/,
            0/*kernel_caller< 8>*/,
            kernel_caller< 9>,
            0/*kernel_caller<10>*/,
            0/*kernel_caller<11>*/,
            0/*kernel_caller<12>*/,
            0/*kernel_caller<13>*/,
            0/*kernel_caller<14>*/,
            kernel_caller<15>,
            0/*kernel_caller<16>*/,
            0/*kernel_caller<17>*/,
            0/*kernel_caller<18>*/,
            0/*kernel_caller<19>*/,
            0/*kernel_caller<20>*/,
            0/*kernel_caller<21>*/,
            0/*kernel_caller<22>*/,
            0/*kernel_caller<23>*/,
            0/*kernel_caller<24>*/,
            0/*kernel_caller<25>*/,
        };
#else
        const static kernel_caller_t callers[] =
        {
            0,
            kernel_caller< 1>, kernel_caller< 2>, kernel_caller< 3>, kernel_caller< 4>, kernel_caller< 5>,
            kernel_caller< 6>, kernel_caller< 7>, kernel_caller< 8>, kernel_caller< 9>, kernel_caller<10>,
            kernel_caller<11>, kernel_caller<12>, kernel_caller<13>, kernel_caller<14>, kernel_caller<15>,
            kernel_caller<16>, kernel_caller<17>, kernel_caller<18>, kernel_caller<19>, kernel_caller<20>,
            kernel_caller<21>, kernel_caller<22>, kernel_caller<23>, kernel_caller<24>, kernel_caller<25>
        };
#endif

        const int calles_num = sizeof(callers)/sizeof(callers[0]);

        void stereoBM_GPU(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& disp, int maxdisp, int winsz, const PtrStepSz<unsigned int>& minSSD_buf, cudaStream_t& stream)
        {
            int winsz2 = winsz >> 1;

            if (winsz2 == 0 || winsz2 >= calles_num || callers[winsz2] == 0)
                cv::gpu::error("Unsupported window size", __FILE__, __LINE__, "stereoBM_GPU");

            //cudaSafeCall( cudaFuncSetCacheConfig(&stereoKernel, cudaFuncCachePreferL1) );
            //cudaSafeCall( cudaFuncSetCacheConfig(&stereoKernel, cudaFuncCachePreferShared) );

            cudaSafeCall( cudaMemset2D(disp.data, disp.step, 0, disp.cols, disp.rows) );
            cudaSafeCall( cudaMemset2D(minSSD_buf.data, minSSD_buf.step, 0xFF, minSSD_buf.cols * minSSD_buf.elemSize(), disp.rows) );

            cudaSafeCall( cudaMemcpyToSymbol( cwidth, &left.cols, sizeof(left.cols) ) );
            cudaSafeCall( cudaMemcpyToSymbol( cheight, &left.rows, sizeof(left.rows) ) );
            cudaSafeCall( cudaMemcpyToSymbol( cminSSDImage, &minSSD_buf.data, sizeof(minSSD_buf.data) ) );

            size_t minssd_step = minSSD_buf.step/minSSD_buf.elemSize();
            cudaSafeCall( cudaMemcpyToSymbol( cminSSD_step,  &minssd_step, sizeof(minssd_step) ) );

            callers[winsz2](left, right, disp, maxdisp, stream);
        }

        //////////////////////////////////////////////////////////////////////////////////////////////////
        /////////////////////////////////////// Sobel Prefiler ///////////////////////////////////////////
        //////////////////////////////////////////////////////////////////////////////////////////////////

        texture<unsigned char, 2, cudaReadModeElementType> texForSobel;

        __global__ void prefilter_kernel(PtrStepSzb output, int prefilterCap)
        {
            int x = blockDim.x * blockIdx.x + threadIdx.x;
            int y = blockDim.y * blockIdx.y + threadIdx.y;

            if (x < output.cols && y < output.rows)
            {
                int conv = (int)tex2D(texForSobel, x - 1, y - 1) * (-1) + (int)tex2D(texForSobel, x + 1, y - 1) * (1) +
                           (int)tex2D(texForSobel, x - 1, y    ) * (-2) + (int)tex2D(texForSobel, x + 1, y    ) * (2) +
                           (int)tex2D(texForSobel, x - 1, y + 1) * (-1) + (int)tex2D(texForSobel, x + 1, y + 1) * (1);


                conv = ::min(::min(::max(-prefilterCap, conv), prefilterCap) + prefilterCap, 255);
                output.ptr(y)[x] = conv & 0xFF;
            }
        }

        void prefilter_xsobel(const PtrStepSzb& input, const PtrStepSzb& output, int prefilterCap, cudaStream_t & stream)
        {
            cudaChannelFormatDesc desc = cudaCreateChannelDesc<unsigned char>();
            cudaSafeCall( cudaBindTexture2D( 0, texForSobel, input.data, desc, input.cols, input.rows, input.step ) );

            dim3 threads(16, 16, 1);
            dim3 grid(1, 1, 1);

            grid.x = divUp(input.cols, threads.x);
            grid.y = divUp(input.rows, threads.y);

            prefilter_kernel<<<grid, threads, 0, stream>>>(output, prefilterCap);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );

            cudaSafeCall( cudaUnbindTexture (texForSobel ) );
        }


        //////////////////////////////////////////////////////////////////////////////////////////////////
        /////////////////////////////////// Textureness filtering ////////////////////////////////////////
        //////////////////////////////////////////////////////////////////////////////////////////////////

        texture<unsigned char, 2, cudaReadModeNormalizedFloat> texForTF;

        __device__ __forceinline__ float sobel(int x, int y)
        {
            float conv = tex2D(texForTF, x - 1, y - 1) * (-1) + tex2D(texForTF, x + 1, y - 1) * (1) +
                         tex2D(texForTF, x - 1, y    ) * (-2) + tex2D(texForTF, x + 1, y    ) * (2) +
                         tex2D(texForTF, x - 1, y + 1) * (-1) + tex2D(texForTF, x + 1, y + 1) * (1);
            return fabs(conv);
        }

        __device__ float CalcSums(float *cols, float *cols_cache, int winsz)
        {
            float cache = 0;
            float cache2 = 0;
            int winsz2 = winsz/2;

            for(int i = 1; i <= winsz2; i++)
                cache += cols[i];

            cols_cache[0] = cache;

            __syncthreads();

            if (threadIdx.x < blockDim.x - winsz2)
                cache2 = cols_cache[winsz2];
            else
                for(int i = winsz2 + 1; i < winsz; i++)
                    cache2 += cols[i];

            return cols[0] + cache + cache2;
        }

        #define RpT (2 * ROWSperTHREAD)  // got experimentally

        __global__ void textureness_kernel(PtrStepSzb disp, int winsz, float threshold)
        {
            int winsz2 = winsz/2;
            int n_dirty_pixels = (winsz2) * 2;

            extern __shared__ float cols_cache[];
            float *cols = cols_cache + blockDim.x + threadIdx.x;
            float *cols_extra = threadIdx.x < n_dirty_pixels ? cols + blockDim.x : 0;

            int x = blockIdx.x * blockDim.x + threadIdx.x;
            int beg_row = blockIdx.y * RpT;
            int end_row = ::min(beg_row + RpT, disp.rows);

            if (x < disp.cols)
            {
                int y = beg_row;

                float sum = 0;
                float sum_extra = 0;

                for(int i = y - winsz2; i <= y + winsz2; ++i)
                {
                    sum += sobel(x - winsz2, i);
                    if (cols_extra)
                        sum_extra += sobel(x + blockDim.x - winsz2, i);
                }
                *cols = sum;
                if (cols_extra)
                    *cols_extra = sum_extra;

                __syncthreads();

                float sum_win = CalcSums(cols, cols_cache + threadIdx.x, winsz) * 255;
                if (sum_win < threshold)
                    disp.data[y * disp.step + x] = 0;

                __syncthreads();

                for(int y = beg_row + 1; y < end_row; ++y)
                {
                    sum = sum - sobel(x - winsz2, y - winsz2 - 1) + sobel(x - winsz2, y + winsz2);
                    *cols = sum;

                    if (cols_extra)
                    {
                        sum_extra = sum_extra - sobel(x + blockDim.x - winsz2, y - winsz2 - 1) + sobel(x + blockDim.x - winsz2, y + winsz2);
                        *cols_extra = sum_extra;
                    }

                    __syncthreads();
                    float sum_win = CalcSums(cols, cols_cache + threadIdx.x, winsz) * 255;
                    if (sum_win < threshold)
                        disp.data[y * disp.step + x] = 0;

                    __syncthreads();
                }
            }
        }

        void postfilter_textureness(const PtrStepSzb& input, int winsz, float avgTexturenessThreshold, const PtrStepSzb& disp, cudaStream_t & stream)
        {
            avgTexturenessThreshold *= winsz * winsz;

            texForTF.filterMode     = cudaFilterModeLinear;
            texForTF.addressMode[0] = cudaAddressModeWrap;
            texForTF.addressMode[1] = cudaAddressModeWrap;

            cudaChannelFormatDesc desc = cudaCreateChannelDesc<unsigned char>();
            cudaSafeCall( cudaBindTexture2D( 0, texForTF, input.data, desc, input.cols, input.rows, input.step ) );

            dim3 threads(128, 1, 1);
            dim3 grid(1, 1, 1);

            grid.x = divUp(input.cols, threads.x);
            grid.y = divUp(input.rows, RpT);

            size_t smem_size = (threads.x + threads.x + (winsz/2) * 2 ) * sizeof(float);
            textureness_kernel<<<grid, threads, smem_size, stream>>>(disp, winsz, avgTexturenessThreshold);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );

            cudaSafeCall( cudaUnbindTexture (texForTF) );
        }
    } // namespace stereobm
}}} // namespace cv { namespace gpu { namespace device


#endif /* CUDA_DISABLER */