/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // // Authors: // * Ozan Tonkal, ozantonkal@gmail.com // * Anatoly Baksheev, Itseez Inc. myname.mysurname <> mycompany.com // //M*/ #include "precomp.hpp" /////////////////////////////////////////////////////////////////////////////////////////////// /// line widget implementation cv::viz::WLine::WLine(const Point3d &pt1, const Point3d &pt2, const Color &color) { vtkSmartPointer<vtkLineSource> line = vtkSmartPointer<vtkLineSource>::New(); line->SetPoint1(pt1.x, pt1.y, pt1.z); line->SetPoint2(pt2.x, pt2.y, pt2.z); line->Update(); vtkSmartPointer<vtkPolyData> polydata = line->GetOutput(); VtkUtils::FillScalars(polydata, color); vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New(); VtkUtils::SetInputData(mapper, polydata); vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } template<> cv::viz::WLine cv::viz::Widget::cast<cv::viz::WLine>() { Widget3D widget = this->cast<Widget3D>(); return static_cast<WLine&>(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// sphere widget implementation cv::viz::WSphere::WSphere(const Point3d ¢er, double radius, int sphere_resolution, const Color &color) { vtkSmartPointer<vtkSphereSource> sphere = vtkSmartPointer<vtkSphereSource>::New(); sphere->SetRadius(radius); sphere->SetCenter(center.x, center.y, center.z); sphere->SetPhiResolution(sphere_resolution); sphere->SetThetaResolution(sphere_resolution); sphere->LatLongTessellationOff(); sphere->Update(); vtkSmartPointer<vtkPolyData> polydata = sphere->GetOutput(); VtkUtils::FillScalars(polydata, color); vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New(); VtkUtils::SetInputData(mapper, polydata); vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } template<> cv::viz::WSphere cv::viz::Widget::cast<cv::viz::WSphere>() { Widget3D widget = this->cast<Widget3D>(); return static_cast<WSphere&>(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// plane widget implementation cv::viz::WPlane::WPlane(const Size2d& size, const Color &color) { vtkSmartPointer<vtkPlaneSource> plane = vtkSmartPointer<vtkPlaneSource>::New(); plane->SetOrigin(-0.5 * size.width, -0.5 * size.height, 0.0); plane->SetPoint1( 0.5 * size.width, -0.5 * size.height, 0.0); plane->SetPoint2(-0.5 * size.width, 0.5 * size.height, 0.0); plane->Update(); vtkSmartPointer<vtkPolyData> polydata = plane->GetOutput(); VtkUtils::FillScalars(polydata, color); vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New(); VtkUtils::SetInputData(mapper, polydata); vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New(); actor->SetMapper(mapper); actor->GetProperty()->LightingOff(); WidgetAccessor::setProp(*this, actor); } cv::viz::WPlane::WPlane(const Point3d& center, const Vec3d& normal, const Vec3d& new_yaxis, const Size2d& size, const Color &color) { Vec3d zvec = normalize(normal); Vec3d xvec = normalize(new_yaxis.cross(zvec)); Vec3d yvec = zvec.cross(xvec); WPlane plane(size, color); plane.applyTransform(makeTransformToGlobal(xvec, yvec, zvec, center)); *this = plane; } template<> cv::viz::WPlane cv::viz::Widget::cast<cv::viz::WPlane>() { Widget3D widget = this->cast<Widget3D>(); return static_cast<WPlane&>(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// arrow widget implementation cv::viz::WArrow::WArrow(const Point3d& pt1, const Point3d& pt2, double thickness, const Color &color) { vtkSmartPointer<vtkArrowSource> arrow_source = vtkSmartPointer<vtkArrowSource>::New(); arrow_source->SetShaftRadius(thickness); arrow_source->SetTipRadius(thickness * 3.0); arrow_source->SetTipLength(thickness * 10.0); Vec3d arbitrary = get_random_vec(); Vec3d start_point(pt1.x, pt1.y, pt1.z), end_point(pt2.x, pt2.y, pt2.z); double length = norm(end_point - start_point); Vec3d xvec = normalized(end_point - start_point); Vec3d zvec = normalized(xvec.cross(arbitrary)); Vec3d yvec = zvec.cross(xvec); Matx33d R = makeTransformToGlobal(xvec, yvec, zvec).rotation(); Affine3d transform_with_scale(R * length, start_point); vtkSmartPointer<vtkPolyData> polydata = VtkUtils::TransformPolydata(arrow_source->GetOutputPort(), transform_with_scale); VtkUtils::FillScalars(polydata, color); vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New(); VtkUtils::SetInputData(mapper, polydata); vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } template<> cv::viz::WArrow cv::viz::Widget::cast<cv::viz::WArrow>() { Widget3D widget = this->cast<Widget3D>(); return static_cast<WArrow&>(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// circle widget implementation cv::viz::WCircle::WCircle(double radius, double thickness, const Color &color) { vtkSmartPointer<vtkDiskSource> disk = vtkSmartPointer<vtkDiskSource>::New(); disk->SetCircumferentialResolution(30); disk->SetInnerRadius(radius - thickness); disk->SetOuterRadius(radius + thickness); disk->Update(); vtkSmartPointer<vtkPolyData> polydata = disk->GetOutput(); VtkUtils::FillScalars(polydata, color); vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New(); VtkUtils::SetInputData(mapper, polydata); vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New(); actor->GetProperty()->LightingOff(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } cv::viz::WCircle::WCircle(double radius, const Point3d& center, const Vec3d& normal, double thickness, const Color &color) { Vec3d arbitrary = get_random_vec(); Vec3d zvec = normalized(normal); Vec3d xvec = normalized(zvec.cross(arbitrary)); Vec3d yvec = zvec.cross(xvec); WCircle circle(radius, thickness, color); circle.applyTransform(makeTransformToGlobal(xvec, yvec, zvec, center)); *this = circle; } template<> cv::viz::WCircle cv::viz::Widget::cast<cv::viz::WCircle>() { Widget3D widget = this->cast<Widget3D>(); return static_cast<WCircle&>(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// WCone widget implementation cv::viz::WCone::WCone(double length, double radius, int resolution, const Color &color) { vtkSmartPointer<vtkConeSource> cone_source = vtkSmartPointer<vtkConeSource>::New(); cone_source->SetCenter(length*0.5, 0.0, 0.0); cone_source->SetHeight(length); cone_source->SetRadius(radius); cone_source->SetResolution(resolution); cone_source->Update(); vtkSmartPointer<vtkPolyData> polydata = cone_source->GetOutput(); VtkUtils::FillScalars(polydata, color); vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New(); VtkUtils::SetInputData(mapper, polydata); vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } cv::viz::WCone::WCone(double radius, const Point3d& center, const Point3d& tip, int resolution, const Color &color) { Vec3d arbitrary = get_random_vec(); Vec3d xvec = normalized(Vec3d(tip - center)); Vec3d zvec = normalized(xvec.cross(arbitrary)); Vec3d yvec = zvec.cross(xvec); WCone circle(norm(tip - center), radius, resolution, color); circle.applyTransform(makeTransformToGlobal(xvec, yvec, zvec, center)); *this = circle; } template<> cv::viz::WCone cv::viz::Widget::cast<cv::viz::WCone>() { Widget3D widget = this->cast<Widget3D>(); return static_cast<WCone&>(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// cylinder widget implementation cv::viz::WCylinder::WCylinder(const Point3d& axis_point1, const Point3d& axis_point2, double radius, int numsides, const Color &color) { vtkSmartPointer<vtkLineSource> line = vtkSmartPointer<vtkLineSource>::New(); line->SetPoint1(axis_point1.x, axis_point1.y, axis_point1.z); line->SetPoint2(axis_point2.x, axis_point2.y, axis_point2.z); vtkSmartPointer<vtkTubeFilter> tuber = vtkSmartPointer<vtkTubeFilter>::New(); tuber->SetInputConnection(line->GetOutputPort()); tuber->SetNumberOfSides(numsides); tuber->SetRadius(radius); tuber->Update(); vtkSmartPointer<vtkPolyData> polydata = tuber->GetOutput(); VtkUtils::FillScalars(polydata, color); vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New(); VtkUtils::SetInputData(mapper, polydata); vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } template<> cv::viz::WCylinder cv::viz::Widget::cast<cv::viz::WCylinder>() { Widget3D widget = this->cast<Widget3D>(); return static_cast<WCylinder&>(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// cylinder widget implementation cv::viz::WCube::WCube(const Point3d& min_point, const Point3d& max_point, bool wire_frame, const Color &color) { double bounds[6]; bounds[0] = std::min(min_point.x, max_point.x); bounds[1] = std::max(min_point.x, max_point.x); bounds[2] = std::min(min_point.y, max_point.y); bounds[3] = std::max(min_point.y, max_point.y); bounds[4] = std::min(min_point.z, max_point.z); bounds[5] = std::max(min_point.z, max_point.z); vtkSmartPointer<vtkPolyDataAlgorithm> cube; if (wire_frame) { cube = vtkSmartPointer<vtkOutlineSource>::New(); vtkOutlineSource::SafeDownCast(cube)->SetBounds(bounds); } else { cube = vtkSmartPointer<vtkCubeSource>::New(); vtkCubeSource::SafeDownCast(cube)->SetBounds(bounds); } cube->Update(); vtkSmartPointer<vtkPolyData> polydata =cube->GetOutput(); VtkUtils::FillScalars(polydata, color); vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New(); VtkUtils::SetInputData(mapper, polydata); vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } template<> cv::viz::WCube cv::viz::Widget::cast<cv::viz::WCube>() { Widget3D widget = this->cast<Widget3D>(); return static_cast<WCube&>(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// coordinate system widget implementation cv::viz::WCoordinateSystem::WCoordinateSystem(double scale) { vtkSmartPointer<vtkAxes> axes = vtkSmartPointer<vtkAxes>::New(); axes->SetOrigin(0, 0, 0); axes->SetScaleFactor(scale); axes->Update(); vtkSmartPointer<vtkUnsignedCharArray> colors = vtkSmartPointer<vtkUnsignedCharArray>::New(); colors->SetNumberOfComponents(3); colors->InsertNextTuple3(255, 0, 0); colors->InsertNextTuple3(255, 0, 0); colors->InsertNextTuple3(0, 255, 0); colors->InsertNextTuple3(0, 255, 0); colors->InsertNextTuple3(0, 0, 255); colors->InsertNextTuple3(0, 0, 255); vtkSmartPointer<vtkPolyData> polydata = axes->GetOutput(); polydata->GetPointData()->SetScalars(colors); vtkSmartPointer<vtkTubeFilter> tube_filter = vtkSmartPointer<vtkTubeFilter>::New(); VtkUtils::SetInputData(tube_filter, polydata); tube_filter->SetRadius(axes->GetScaleFactor() / 50.0); tube_filter->SetNumberOfSides(6); tube_filter->Update(); vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New(); mapper->SetScalarModeToUsePointData(); VtkUtils::SetInputData(mapper, tube_filter->GetOutput()); vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } template<> cv::viz::WCoordinateSystem cv::viz::Widget::cast<cv::viz::WCoordinateSystem>() { Widget3D widget = this->cast<Widget3D>(); return static_cast<WCoordinateSystem&>(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// polyline widget implementation cv::viz::WPolyLine::WPolyLine(InputArray points, InputArray colors) { vtkSmartPointer<vtkCloudMatSource> cloud_source = vtkSmartPointer<vtkCloudMatSource>::New(); cloud_source->SetColorCloud(points, colors); cloud_source->Update(); vtkSmartPointer<vtkPolyData> polydata = cloud_source->GetOutput(); vtkSmartPointer<vtkCellArray> cell_array = vtkSmartPointer<vtkCellArray>::New(); cell_array->Allocate(cell_array->EstimateSize(1, polydata->GetNumberOfPoints())); cell_array->InsertNextCell(polydata->GetNumberOfPoints()); for(vtkIdType i = 0; i < polydata->GetNumberOfPoints(); ++i) cell_array->InsertCellPoint(i); polydata->SetLines(cell_array); vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New(); VtkUtils::SetInputData(mapper, polydata); mapper->SetScalarRange(0, 255); vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } cv::viz::WPolyLine::WPolyLine(InputArray points, const Color &color) { WPolyLine polyline(points, Mat(points.size(), CV_8UC3, color)); *this = polyline; } template<> cv::viz::WPolyLine cv::viz::Widget::cast<cv::viz::WPolyLine>() { Widget3D widget = this->cast<Widget3D>(); return static_cast<WPolyLine&>(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// grid widget implementation cv::viz::WGrid::WGrid(const Vec2i &cells, const Vec2d &cells_spacing, const Color &color) { vtkSmartPointer<vtkImageData> grid_data = vtkSmartPointer<vtkImageData>::New(); // Add 1 to dimensions because in ImageData dimensions is the number of lines // - however here it means number of cells grid_data->SetDimensions(cells[0]+1, cells[1]+1, 1); grid_data->SetSpacing(cells_spacing[0], cells_spacing[1], 0.); // Set origin of the grid to be the middle of the grid grid_data->SetOrigin(cells[0] * cells_spacing[0] * (-0.5), cells[1] * cells_spacing[1] * (-0.5), 0); // Extract the edges so we have the grid vtkSmartPointer<vtkExtractEdges> extract_edges = vtkSmartPointer<vtkExtractEdges>::New(); VtkUtils::SetInputData(extract_edges, grid_data); extract_edges->Update(); vtkSmartPointer<vtkPolyData> polydata = extract_edges->GetOutput(); VtkUtils::FillScalars(polydata, color); vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New(); VtkUtils::SetInputData(mapper, polydata); vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } cv::viz::WGrid::WGrid(const Point3d& center, const Vec3d& normal, const Vec3d& new_yaxis, const Vec2i &cells, const Vec2d &cells_spacing, const Color &color) { Vec3d zvec = normalize(normal); Vec3d xvec = normalize(new_yaxis.cross(zvec)); Vec3d yvec = zvec.cross(xvec); WGrid grid(cells, cells_spacing, color); grid.applyTransform(makeTransformToGlobal(xvec, yvec, zvec, center)); *this = grid; } template<> cv::viz::WGrid cv::viz::Widget::cast<cv::viz::WGrid>() { Widget3D widget = this->cast<Widget3D>(); return static_cast<WGrid&>(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// text3D widget implementation cv::viz::WText3D::WText3D(const String &text, const Point3d &position, double text_scale, bool face_camera, const Color &color) { vtkSmartPointer<vtkVectorText> textSource = vtkSmartPointer<vtkVectorText>::New(); textSource->SetText(text.c_str()); textSource->Update(); vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New(); mapper->SetInputConnection(textSource->GetOutputPort()); if (face_camera) { vtkSmartPointer<vtkFollower> actor = vtkSmartPointer<vtkFollower>::New(); actor->SetMapper(mapper); actor->SetPosition(position.x, position.y, position.z); actor->SetScale(text_scale); WidgetAccessor::setProp(*this, actor); } else { vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New(); actor->SetMapper(mapper); actor->SetPosition(position.x, position.y, position.z); actor->SetScale(text_scale); actor->GetProperty()->LightingOff(); WidgetAccessor::setProp(*this, actor); } setColor(color); } void cv::viz::WText3D::setText(const String &text) { vtkActor *actor = vtkActor::SafeDownCast(WidgetAccessor::getProp(*this)); CV_Assert("This widget does not support text." && actor); // Update text source vtkPolyDataMapper *mapper = vtkPolyDataMapper::SafeDownCast(actor->GetMapper()); vtkVectorText * textSource = vtkVectorText::SafeDownCast(mapper->GetInputConnection(0,0)->GetProducer()); CV_Assert("This widget does not support text." && textSource); textSource->SetText(text.c_str()); textSource->Modified(); textSource->Update(); } cv::String cv::viz::WText3D::getText() const { vtkFollower *actor = vtkFollower::SafeDownCast(WidgetAccessor::getProp(*this)); CV_Assert("This widget does not support text." && actor); vtkPolyDataMapper *mapper = vtkPolyDataMapper::SafeDownCast(actor->GetMapper()); vtkVectorText * textSource = vtkVectorText::SafeDownCast(mapper->GetInputConnection(0,0)->GetProducer()); CV_Assert("This widget does not support text." && textSource); return textSource->GetText(); } template<> cv::viz::WText3D cv::viz::Widget::cast<cv::viz::WText3D>() { Widget3D widget = this->cast<Widget3D>(); return static_cast<WText3D&>(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// text widget implementation cv::viz::WText::WText(const String &text, const Point &pos, int font_size, const Color &color) { vtkSmartPointer<vtkTextActor> actor = vtkSmartPointer<vtkTextActor>::New(); actor->SetDisplayPosition(pos.x, pos.y); actor->SetInput(text.c_str()); actor->GetProperty()->SetDisplayLocationToForeground(); vtkSmartPointer<vtkTextProperty> tprop = actor->GetTextProperty(); tprop->SetFontSize(font_size); tprop->SetFontFamilyToCourier(); tprop->SetJustificationToLeft(); tprop->BoldOn(); Color c = vtkcolor(color); tprop->SetColor(c.val); WidgetAccessor::setProp(*this, actor); } template<> cv::viz::WText cv::viz::Widget::cast<cv::viz::WText>() { Widget2D widget = this->cast<Widget2D>(); return static_cast<WText&>(widget); } void cv::viz::WText::setText(const String &text) { vtkTextActor *actor = vtkTextActor::SafeDownCast(WidgetAccessor::getProp(*this)); CV_Assert("This widget does not support text." && actor); actor->SetInput(text.c_str()); } cv::String cv::viz::WText::getText() const { vtkTextActor *actor = vtkTextActor::SafeDownCast(WidgetAccessor::getProp(*this)); CV_Assert("This widget does not support text." && actor); return actor->GetInput(); } /////////////////////////////////////////////////////////////////////////////////////////////// /// image overlay widget implementation cv::viz::WImageOverlay::WImageOverlay(InputArray image, const Rect &rect) { CV_Assert(!image.empty() && image.depth() == CV_8U); vtkSmartPointer<vtkImageMatSource> source = vtkSmartPointer<vtkImageMatSource>::New(); source->SetImage(image); Size sz = image.size(); // Scale the image based on the Rect, and flip to match y-ais orientation vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New(); transform->Scale(sz.width/(double)rect.width, sz.height/(double)rect.height, 1.0); transform->RotateX(180); vtkSmartPointer<vtkImageReslice> image_reslice = vtkSmartPointer<vtkImageReslice>::New(); image_reslice->SetResliceTransform(transform); image_reslice->SetInputConnection(source->GetOutputPort()); image_reslice->SetOutputDimensionality(2); image_reslice->InterpolateOn(); image_reslice->AutoCropOutputOn(); image_reslice->Update(); vtkSmartPointer<vtkImageMapper> image_mapper = vtkSmartPointer<vtkImageMapper>::New(); image_mapper->SetInputConnection(image_reslice->GetOutputPort()); image_mapper->SetColorWindow(255); // OpenCV color image_mapper->SetColorLevel(127.5); vtkSmartPointer<vtkActor2D> actor = vtkSmartPointer<vtkActor2D>::New(); actor->SetMapper(image_mapper); actor->SetPosition(rect.x, rect.y); actor->GetProperty()->SetDisplayLocationToForeground(); WidgetAccessor::setProp(*this, actor); } void cv::viz::WImageOverlay::setImage(InputArray image) { CV_Assert(!image.empty() && image.depth() == CV_8U); vtkActor2D *actor = vtkActor2D::SafeDownCast(WidgetAccessor::getProp(*this)); CV_Assert("This widget does not support overlay image." && actor); vtkImageMapper *mapper = vtkImageMapper::SafeDownCast(actor->GetMapper()); CV_Assert("This widget does not support overlay image." && mapper); \ Vec6i extent; mapper->GetInput()->GetExtent(extent.val); Size size(extent[1], extent[3]); // Create the vtk image and set its parameters based on input image vtkSmartPointer<vtkImageMatSource> source = vtkSmartPointer<vtkImageMatSource>::New(); source->SetImage(image); Size sz = image.size(); // Scale the image based on the Rect, and flip to match y-ais orientation vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New(); transform->Scale(sz.width/(double)size.width, sz.height/(double)size.height, 1.0); transform->RotateX(180); vtkSmartPointer<vtkImageReslice> image_reslice = vtkSmartPointer<vtkImageReslice>::New(); image_reslice->SetResliceTransform(transform); image_reslice->SetInputConnection(source->GetOutputPort()); image_reslice->SetOutputDimensionality(2); image_reslice->InterpolateOn(); image_reslice->AutoCropOutputOn(); image_reslice->Update(); mapper->SetInputConnection(image_reslice->GetOutputPort()); } template<> cv::viz::WImageOverlay cv::viz::Widget::cast<cv::viz::WImageOverlay>() { Widget2D widget = this->cast<Widget2D>(); return static_cast<WImageOverlay&>(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// image 3D widget implementation cv::viz::WImage3D::WImage3D(InputArray image, const Size2d &size) { CV_Assert(!image.empty() && image.depth() == CV_8U); vtkSmartPointer<vtkImageMatSource> source = vtkSmartPointer<vtkImageMatSource>::New(); source->SetImage(image); vtkSmartPointer<vtkTexture> texture = vtkSmartPointer<vtkTexture>::New(); texture->SetInputConnection(source->GetOutputPort()); vtkSmartPointer<vtkPlaneSource> plane = vtkSmartPointer<vtkPlaneSource>::New(); plane->SetOrigin(-0.5 * size.width, -0.5 * size.height, 0.0); plane->SetPoint1( 0.5 * size.width, -0.5 * size.height, 0.0); plane->SetPoint2(-0.5 * size.width, 0.5 * size.height, 0.0); vtkSmartPointer<vtkTextureMapToPlane> textured_plane = vtkSmartPointer<vtkTextureMapToPlane>::New(); textured_plane->SetInputConnection(plane->GetOutputPort()); vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New(); mapper->SetInputConnection(textured_plane->GetOutputPort()); vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New(); actor->SetMapper(mapper); actor->SetTexture(texture); actor->GetProperty()->ShadingOff(); actor->GetProperty()->LightingOff(); WidgetAccessor::setProp(*this, actor); } cv::viz::WImage3D::WImage3D(InputArray image, const Size2d &size, const Vec3d ¢er, const Vec3d &normal, const Vec3d &up_vector) { CV_Assert(!image.empty() && image.depth() == CV_8U); // Compute the transformation matrix for drawing the camera frame in a scene Vec3d n = normalize(normal); Vec3d u = normalize(up_vector.cross(n)); Vec3d v = n.cross(u); Affine3d pose = makeTransformToGlobal(u, v, n, center); WImage3D image3d(image, size); image3d.applyTransform(pose); *this = image3d; } void cv::viz::WImage3D::setImage(InputArray image) { CV_Assert(!image.empty() && image.depth() == CV_8U); vtkActor *actor = vtkActor::SafeDownCast(WidgetAccessor::getProp(*this)); CV_Assert("This widget does not support 3D image." && actor); vtkSmartPointer<vtkImageMatSource> source = vtkSmartPointer<vtkImageMatSource>::New(); source->SetImage(image); vtkSmartPointer<vtkTexture> texture = vtkSmartPointer<vtkTexture>::New(); texture->SetInputConnection(source->GetOutputPort()); actor->SetTexture(texture); } void cv::viz::WImage3D::setSize(const cv::Size& size) { vtkSmartPointer<vtkActor> actor = vtkActor::SafeDownCast(WidgetAccessor::getProp(*this)); vtkSmartPointer<vtkPolyDataMapper> mapper = vtkPolyDataMapper::SafeDownCast(actor->GetMapper()); vtkSmartPointer<vtkTextureMapToPlane> textured_plane; vtkSmartPointer<vtkPlaneSource> plane; #if VTK_MAJOR_VERSION <= 5 textured_plane = vtkTextureMapToPlane::SafeDownCast(mapper->GetInputConnection(0,0)->GetProducer()); plane = vtkPlaneSource::SafeDownCast(textured_plane->GetInputConnection(0,0)->GetProducer()); #else textured_plane = vtkTextureMapToPlane::SafeDownCast(mapper->GetInputAlgorithm()); plane = vtkPlaneSource::SafeDownCast(textured_plane->GetInputAlgorithm()); #endif plane->SetOrigin(-0.5 * size.width, -0.5 * size.height, 0.0); plane->SetPoint1( 0.5 * size.width, -0.5 * size.height, 0.0); plane->SetPoint2(-0.5 * size.width, 0.5 * size.height, 0.0); } template<> cv::viz::WImage3D cv::viz::Widget::cast<cv::viz::WImage3D>() { Widget3D widget = this->cast<Widget3D>(); return static_cast<WImage3D&>(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// camera position widget implementation namespace cv { namespace viz { namespace { struct CameraPositionUtils { static vtkSmartPointer<vtkPolyData> createFrustum(double aspect_ratio, double fovy, double scale) { vtkSmartPointer<vtkCamera> camera = vtkSmartPointer<vtkCamera>::New(); camera->SetViewAngle(fovy); camera->SetPosition(0.0, 0.0, 0.0); camera->SetViewUp(0.0, 1.0, 0.0); camera->SetFocalPoint(0.0, 0.0, 1.0); camera->SetClippingRange(1e-9, scale); double planes_array[24]; camera->GetFrustumPlanes(aspect_ratio, planes_array); vtkSmartPointer<vtkPlanes> planes = vtkSmartPointer<vtkPlanes>::New(); planes->SetFrustumPlanes(planes_array); vtkSmartPointer<vtkFrustumSource> frustumSource = vtkSmartPointer<vtkFrustumSource>::New(); frustumSource->SetPlanes(planes); vtkSmartPointer<vtkExtractEdges> extract_edges = vtkSmartPointer<vtkExtractEdges>::New(); extract_edges->SetInputConnection(frustumSource->GetOutputPort()); extract_edges->Update(); return extract_edges->GetOutput(); } static Mat ensureColorImage(InputArray image) { Mat color(image.size(), CV_8UC3); if (image.channels() == 1) { Vec3b *drow = color.ptr<Vec3b>(); for(int y = 0; y < color.rows; ++y) { const unsigned char *srow = image.getMat().ptr<unsigned char>(y); const unsigned char *send = srow + color.cols; for(;srow < send;) *drow++ = Vec3b::all(*srow++); } } else image.copyTo(color); return color; } }; }}} cv::viz::WCameraPosition::WCameraPosition(double scale) { vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New(); VtkUtils::SetInputData(mapper, getPolyData(WCoordinateSystem(scale))); mapper->SetScalarModeToUsePointData(); vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } cv::viz::WCameraPosition::WCameraPosition(const Matx33d &K, double scale, const Color &color) { double f_x = K(0,0), f_y = K(1,1), c_y = K(1,2); // Assuming that this is an ideal camera (c_y and c_x are at the center of the image) double fovy = 2.0 * atan2(c_y, f_y) * 180 / CV_PI; double aspect_ratio = f_y / f_x; vtkSmartPointer<vtkPolyData> polydata = CameraPositionUtils::createFrustum(aspect_ratio, fovy, scale); VtkUtils::FillScalars(polydata, color); vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New(); VtkUtils::SetInputData(mapper, polydata); vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } cv::viz::WCameraPosition::WCameraPosition(const Vec2d &fov, double scale, const Color &color) { double aspect_ratio = tan(fov[0] * 0.5) / tan(fov[1] * 0.5); double fovy = fov[1] * 180 / CV_PI; vtkSmartPointer<vtkPolyData> polydata = CameraPositionUtils::createFrustum(aspect_ratio, fovy, scale); VtkUtils::FillScalars(polydata, color); vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New(); VtkUtils::SetInputData(mapper, polydata); vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } cv::viz::WCameraPosition::WCameraPosition(const Matx33d &K, InputArray _image, double scale, const Color &color) { CV_Assert(!_image.empty() && _image.depth() == CV_8U); Mat image = CameraPositionUtils::ensureColorImage(_image); image.at<Vec3b>(0, 0) = Vec3d(color.val); //workaround of VTK limitation double f_y = K(1,1), c_y = K(1,2); // Assuming that this is an ideal camera (c_y and c_x are at the center of the image) double fovy = 2.0 * atan2(c_y, f_y) * 180.0 / CV_PI; double far_end_height = 2.00 * c_y * scale / f_y; double aspect_ratio = image.cols/(double)image.rows; double image_scale = far_end_height/image.rows; WImage3D image_widget(image, Size2d(image.size()) * image_scale); image_widget.applyTransform(Affine3d().translate(Vec3d(0, 0, scale))); vtkSmartPointer<vtkPolyData> plane = getPolyData(image_widget); vtkSmartPointer<vtkPolyData> frustum = CameraPositionUtils::createFrustum(aspect_ratio, fovy, scale); // Frustum needs to be textured or else it can't be combined with image vtkSmartPointer<vtkTextureMapToPlane> frustum_texture = vtkSmartPointer<vtkTextureMapToPlane>::New(); VtkUtils::SetInputData(frustum_texture, frustum); frustum_texture->SetSRange(0.0, 0.0); // Texture mapping with only one pixel frustum_texture->SetTRange(0.0, 0.0); // from the image to have constant color vtkSmartPointer<vtkAppendPolyData> append_filter = vtkSmartPointer<vtkAppendPolyData>::New(); append_filter->AddInputConnection(frustum_texture->GetOutputPort()); VtkUtils::AddInputData(append_filter, plane); vtkSmartPointer<vtkActor> actor = getActor(image_widget); actor->GetMapper()->SetInputConnection(append_filter->GetOutputPort()); WidgetAccessor::setProp(*this, actor); } cv::viz::WCameraPosition::WCameraPosition(const Vec2d &fov, InputArray _image, double scale, const Color &color) { CV_Assert(!_image.empty() && _image.depth() == CV_8U); Mat image = CameraPositionUtils::ensureColorImage(_image); image.at<Vec3b>(0, 0) = Vec3d(color.val); //workaround of VTK limitation double fovy = fov[1] * 180.0 / CV_PI; double far_end_height = 2.0 * scale * tan(fov[1] * 0.5); double aspect_ratio = image.cols/(double)image.rows; double image_scale = far_end_height/image.rows; WImage3D image_widget(image, Size2d(image.size()) * image_scale); image_widget.applyTransform(Affine3d().translate(Vec3d(0, 0, scale))); vtkSmartPointer<vtkPolyData> plane = getPolyData(image_widget); vtkSmartPointer<vtkPolyData> frustum = CameraPositionUtils::createFrustum(aspect_ratio, fovy, scale); // Frustum needs to be textured or else it can't be combined with image vtkSmartPointer<vtkTextureMapToPlane> frustum_texture = vtkSmartPointer<vtkTextureMapToPlane>::New(); VtkUtils::SetInputData(frustum_texture, frustum); frustum_texture->SetSRange(0.0, 0.0); // Texture mapping with only one pixel frustum_texture->SetTRange(0.0, 0.0); // from the image to have constant color vtkSmartPointer<vtkAppendPolyData> append_filter = vtkSmartPointer<vtkAppendPolyData>::New(); append_filter->AddInputConnection(frustum_texture->GetOutputPort()); VtkUtils::AddInputData(append_filter, plane); vtkSmartPointer<vtkActor> actor = getActor(image_widget); actor->GetMapper()->SetInputConnection(append_filter->GetOutputPort()); WidgetAccessor::setProp(*this, actor); } template<> cv::viz::WCameraPosition cv::viz::Widget::cast<cv::viz::WCameraPosition>() { Widget3D widget = this->cast<Widget3D>(); return static_cast<WCameraPosition&>(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// trajectory widget implementation cv::viz::WTrajectory::WTrajectory(InputArray _path, int display_mode, double scale, const Color &color) { vtkSmartPointer<vtkAppendPolyData> append_filter = vtkSmartPointer<vtkAppendPolyData>::New(); // Bitwise and with 3 in order to limit the domain to 2 bits if (display_mode & WTrajectory::PATH) { Mat points = vtkTrajectorySource::ExtractPoints(_path); vtkSmartPointer<vtkPolyData> polydata = getPolyData(WPolyLine(points, color)); VtkUtils::AddInputData(append_filter, polydata); } if (display_mode & WTrajectory::FRAMES) { vtkSmartPointer<vtkTrajectorySource> source = vtkSmartPointer<vtkTrajectorySource>::New(); source->SetTrajectory(_path); vtkSmartPointer<vtkPolyData> glyph = getPolyData(WCoordinateSystem(scale)); vtkSmartPointer<vtkTensorGlyph> tensor_glyph = vtkSmartPointer<vtkTensorGlyph>::New(); tensor_glyph->SetInputConnection(source->GetOutputPort()); VtkUtils::SetSourceData(tensor_glyph, glyph); tensor_glyph->ExtractEigenvaluesOff(); // Treat as a rotation matrix, not as something with eigenvalues tensor_glyph->ThreeGlyphsOff(); tensor_glyph->SymmetricOff(); tensor_glyph->ColorGlyphsOff(); append_filter->AddInputConnection(tensor_glyph->GetOutputPort()); } append_filter->Update(); vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New(); VtkUtils::SetInputData(mapper, append_filter->GetOutput()); mapper->SetScalarModeToUsePointData(); mapper->SetScalarRange(0, 255); vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } template<> cv::viz::WTrajectory cv::viz::Widget::cast<cv::viz::WTrajectory>() { Widget3D widget = this->cast<Widget3D>(); return static_cast<WTrajectory&>(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// WTrajectoryFrustums widget implementation cv::viz::WTrajectoryFrustums::WTrajectoryFrustums(InputArray _path, const Matx33d &K, double scale, const Color &color) { vtkSmartPointer<vtkTrajectorySource> source = vtkSmartPointer<vtkTrajectorySource>::New(); source->SetTrajectory(_path); vtkSmartPointer<vtkPolyData> glyph = getPolyData(WCameraPosition(K, scale)); VtkUtils::FillScalars(glyph, color); vtkSmartPointer<vtkTensorGlyph> tensor_glyph = vtkSmartPointer<vtkTensorGlyph>::New(); tensor_glyph->SetInputConnection(source->GetOutputPort()); VtkUtils::SetSourceData(tensor_glyph, glyph); tensor_glyph->ExtractEigenvaluesOff(); // Treat as a rotation matrix, not as something with eigenvalues tensor_glyph->ThreeGlyphsOff(); tensor_glyph->SymmetricOff(); tensor_glyph->ColorGlyphsOff(); tensor_glyph->Update(); vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New(); VtkUtils::SetInputData(mapper, tensor_glyph->GetOutput()); vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } cv::viz::WTrajectoryFrustums::WTrajectoryFrustums(InputArray _path, const Vec2d &fov, double scale, const Color &color) { vtkSmartPointer<vtkTrajectorySource> source = vtkSmartPointer<vtkTrajectorySource>::New(); source->SetTrajectory(_path); vtkSmartPointer<vtkPolyData> glyph = getPolyData(WCameraPosition(fov, scale)); VtkUtils::FillScalars(glyph, color); vtkSmartPointer<vtkTensorGlyph> tensor_glyph = vtkSmartPointer<vtkTensorGlyph>::New(); tensor_glyph->SetInputConnection(source->GetOutputPort()); VtkUtils::SetSourceData(tensor_glyph, glyph); tensor_glyph->ExtractEigenvaluesOff(); // Treat as a rotation matrix, not as something with eigenvalues tensor_glyph->ThreeGlyphsOff(); tensor_glyph->SymmetricOff(); tensor_glyph->ColorGlyphsOff(); tensor_glyph->Update(); vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New(); VtkUtils::SetInputData(mapper, tensor_glyph->GetOutput()); vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } template<> cv::viz::WTrajectoryFrustums cv::viz::Widget::cast<cv::viz::WTrajectoryFrustums>() { Widget3D widget = this->cast<Widget3D>(); return static_cast<WTrajectoryFrustums&>(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// WTrajectorySpheres widget implementation cv::viz::WTrajectorySpheres::WTrajectorySpheres(InputArray _path, double line_length, double radius, const Color &from, const Color &to) { CV_Assert(_path.kind() == _InputArray::STD_VECTOR || _path.kind() == _InputArray::MAT); CV_Assert(_path.type() == CV_32FC(16) || _path.type() == CV_64FC(16)); Mat path64; _path.getMat().convertTo(path64, CV_64F); Affine3d *traj = path64.ptr<Affine3d>(); size_t total = path64.total(); vtkSmartPointer<vtkAppendPolyData> append_filter = vtkSmartPointer<vtkAppendPolyData>::New(); for(size_t i = 0; i < total; ++i) { Vec3d curr = traj[i].translation(); vtkSmartPointer<vtkSphereSource> sphere_source = vtkSmartPointer<vtkSphereSource>::New(); sphere_source->SetCenter(curr.val); sphere_source->SetRadius( (i == 0) ? 2 * radius : radius ); sphere_source->Update(); double alpha = static_cast<double>(i)/total; Color c = from * (1 - alpha) + to * alpha; vtkSmartPointer<vtkPolyData> polydata = sphere_source->GetOutput(); polydata->GetCellData()->SetScalars(VtkUtils::FillScalars(polydata->GetNumberOfCells(), c)); VtkUtils::AddInputData(append_filter, polydata); if (i > 0) { Vec3d prev = traj[i-1].translation(); Vec3d lvec = prev - curr; if(norm(lvec) > line_length) lvec = normalize(lvec) * line_length; Vec3d lend = curr + lvec; vtkSmartPointer<vtkLineSource> line_source = vtkSmartPointer<vtkLineSource>::New(); line_source->SetPoint1(curr.val); line_source->SetPoint2(lend.val); line_source->Update(); vtkSmartPointer<vtkPolyData> polydata_ = line_source->GetOutput(); polydata_->GetCellData()->SetScalars(VtkUtils::FillScalars(polydata_->GetNumberOfCells(), c)); VtkUtils::AddInputData(append_filter, polydata_); } } append_filter->Update(); vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New(); mapper->SetScalarModeToUseCellData(); VtkUtils::SetInputData(mapper, append_filter->GetOutput()); vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } template<> cv::viz::WTrajectorySpheres cv::viz::Widget::cast<cv::viz::WTrajectorySpheres>() { Widget3D widget = this->cast<Widget3D>(); return static_cast<WTrajectorySpheres&>(widget); }