/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include <algorithm> #include <vector> #include <iostream> using namespace cv; using namespace cv::flann; //-------------------------------------------------------------------------------- class NearestNeighborTest : public cvtest::BaseTest { public: NearestNeighborTest() {} protected: static const int minValue = 0; static const int maxValue = 1; static const int dims = 30; static const int featuresCount = 2000; static const int K = 1; // * should also test 2nd nn etc.? virtual void run( int start_from ); virtual void createModel( const Mat& data ) = 0; virtual int findNeighbors( Mat& points, Mat& neighbors ) = 0; virtual int checkGetPoins( const Mat& data ); virtual int checkFindBoxed(); virtual int checkFind( const Mat& data ); virtual void releaseModel() = 0; }; int NearestNeighborTest::checkGetPoins( const Mat& ) { return cvtest::TS::OK; } int NearestNeighborTest::checkFindBoxed() { return cvtest::TS::OK; } int NearestNeighborTest::checkFind( const Mat& data ) { int code = cvtest::TS::OK; int pointsCount = 1000; float noise = 0.2f; RNG rng; Mat points( pointsCount, dims, CV_32FC1 ); Mat results( pointsCount, K, CV_32SC1 ); std::vector<int> fmap( pointsCount ); for( int pi = 0; pi < pointsCount; pi++ ) { int fi = rng.next() % featuresCount; fmap[pi] = fi; for( int d = 0; d < dims; d++ ) points.at<float>(pi, d) = data.at<float>(fi, d) + rng.uniform(0.0f, 1.0f) * noise; } code = findNeighbors( points, results ); if( code == cvtest::TS::OK ) { int correctMatches = 0; for( int pi = 0; pi < pointsCount; pi++ ) { if( fmap[pi] == results.at<int>(pi, 0) ) correctMatches++; } double correctPerc = correctMatches / (double)pointsCount; if (correctPerc < .75) { ts->printf( cvtest::TS::LOG, "correct_perc = %d\n", correctPerc ); code = cvtest::TS::FAIL_BAD_ACCURACY; } } return code; } void NearestNeighborTest::run( int /*start_from*/ ) { int code = cvtest::TS::OK, tempCode; Mat desc( featuresCount, dims, CV_32FC1 ); randu( desc, Scalar(minValue), Scalar(maxValue) ); createModel( desc ); tempCode = checkGetPoins( desc ); if( tempCode != cvtest::TS::OK ) { ts->printf( cvtest::TS::LOG, "bad accuracy of GetPoints \n" ); code = tempCode; } tempCode = checkFindBoxed(); if( tempCode != cvtest::TS::OK ) { ts->printf( cvtest::TS::LOG, "bad accuracy of FindBoxed \n" ); code = tempCode; } tempCode = checkFind( desc ); if( tempCode != cvtest::TS::OK ) { ts->printf( cvtest::TS::LOG, "bad accuracy of Find \n" ); code = tempCode; } releaseModel(); ts->set_failed_test_info( code ); } //-------------------------------------------------------------------------------- class CV_LSHTest : public NearestNeighborTest { public: CV_LSHTest() {} protected: virtual void createModel( const Mat& data ); virtual int findNeighbors( Mat& points, Mat& neighbors ); virtual void releaseModel(); struct CvLSH* lsh; CvMat desc; }; void CV_LSHTest::createModel( const Mat& data ) { desc = data; lsh = cvCreateMemoryLSH( data.cols, data.rows, 70, 20, CV_32FC1 ); cvLSHAdd( lsh, &desc ); } int CV_LSHTest::findNeighbors( Mat& points, Mat& neighbors ) { const int emax = 20; Mat dist( points.rows, neighbors.cols, CV_64FC1); CvMat _dist = dist, _points = points, _neighbors = neighbors; cvLSHQuery( lsh, &_points, &_neighbors, &_dist, neighbors.cols, emax ); return cvtest::TS::OK; } void CV_LSHTest::releaseModel() { cvReleaseLSH( &lsh ); } //-------------------------------------------------------------------------------- class CV_FeatureTreeTest_C : public NearestNeighborTest { public: CV_FeatureTreeTest_C() {} protected: virtual int findNeighbors( Mat& points, Mat& neighbors ); virtual void releaseModel(); CvFeatureTree* tr; CvMat desc; }; int CV_FeatureTreeTest_C::findNeighbors( Mat& points, Mat& neighbors ) { const int emax = 20; Mat dist( points.rows, neighbors.cols, CV_64FC1); CvMat _dist = dist, _points = points, _neighbors = neighbors; cvFindFeatures( tr, &_points, &_neighbors, &_dist, neighbors.cols, emax ); return cvtest::TS::OK; } void CV_FeatureTreeTest_C::releaseModel() { cvReleaseFeatureTree( tr ); } //-------------------------------------- class CV_SpillTreeTest_C : public CV_FeatureTreeTest_C { public: CV_SpillTreeTest_C() {} protected: virtual void createModel( const Mat& data ); }; void CV_SpillTreeTest_C::createModel( const Mat& data ) { desc = data; tr = cvCreateSpillTree( &desc ); } //-------------------------------------- class CV_KDTreeTest_C : public CV_FeatureTreeTest_C { public: CV_KDTreeTest_C() {} protected: virtual void createModel( const Mat& data ); virtual int checkFindBoxed(); }; void CV_KDTreeTest_C::createModel( const Mat& data ) { desc = data; tr = cvCreateKDTree( &desc ); } int CV_KDTreeTest_C::checkFindBoxed() { Mat min(1, dims, CV_32FC1 ), max(1, dims, CV_32FC1 ), indices( 1, 1, CV_32SC1 ); float l = minValue, r = maxValue; min.setTo(Scalar(l)), max.setTo(Scalar(r)); CvMat _min = min, _max = max, _indices = indices; // TODO check indices if( cvFindFeaturesBoxed( tr, &_min, &_max, &_indices ) != featuresCount ) return cvtest::TS::FAIL_BAD_ACCURACY; return cvtest::TS::OK; } TEST(Legacy_LSH, regression) { CV_LSHTest test; test.safe_run(); } TEST(Legacy_SpillTree, regression) { CV_SpillTreeTest_C test; test.safe_run(); } TEST(Legacy_KDTree_C, regression) { CV_KDTreeTest_C test; test.safe_run(); }