/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include <opencv2/ts/cuda_test.hpp> #include "opencv2/calib3d.hpp" #define NUM_DIST_COEFF_TILT 14 /** Some conventions: - the first camera determines the world coordinate system - y points down, hence top means minimal y value (negative) and bottom means maximal y value (positive) - the field of view plane is tilted around x such that it intersects the xy-plane in a line with a large (positive) y-value - image sensor and object are both modelled in the halfspace z > 0 **/ class cameraCalibrationTiltTest : public ::testing::Test { protected: cameraCalibrationTiltTest() : m_toRadian(acos(-1.0)/180.0) , m_toDegree(180.0/acos(-1.0)) {} virtual void SetUp(); protected: static const cv::Size m_imageSize; static const double m_pixelSize; static const double m_circleConfusionPixel; static const double m_lensFocalLength; static const double m_lensFNumber; static const double m_objectDistance; static const double m_planeTiltDegree; static const double m_pointTargetDist; static const int m_pointTargetNum; /** image distance coresponding to working distance */ double m_imageDistance; /** image tilt angle corresponding to the tilt of the object plane */ double m_imageTiltDegree; /** center of the field of view, near and far plane */ std::vector<cv::Vec3d> m_fovCenter; /** normal of the field of view, near and far plane */ std::vector<cv::Vec3d> m_fovNormal; /** points on a plane calibration target */ std::vector<cv::Point3d> m_pointTarget; /** rotations for the calibration target */ std::vector<cv::Vec3d> m_pointTargetRvec; /** translations for the calibration target */ std::vector<cv::Vec3d> m_pointTargetTvec; /** camera matrix */ cv::Matx33d m_cameraMatrix; /** distortion coefficients */ cv::Vec<double, NUM_DIST_COEFF_TILT> m_distortionCoeff; /** random generator */ cv::RNG m_rng; /** degree to radian conversion factor */ const double m_toRadian; /** radian to degree conversion factor */ const double m_toDegree; /** computes for a given distance of an image or object point the distance of the corresponding object or image point */ double opticalMap(double dist) { return m_lensFocalLength*dist/(dist - m_lensFocalLength); } /** magnification of the optical map */ double magnification(double dist) { return m_lensFocalLength/(dist - m_lensFocalLength); } /** Changes given distortion coefficients randomly by adding a uniformly distributed random variable in [-max max] \param coeff input \param max limits for the random variables */ void randomDistortionCoeff( cv::Vec<double, NUM_DIST_COEFF_TILT>& coeff, const cv::Vec<double, NUM_DIST_COEFF_TILT>& max) { for (int i = 0; i < coeff.rows; ++i) coeff(i) += m_rng.uniform(-max(i), max(i)); } /** numerical jacobian */ void numericalDerivative( cv::Mat& jac, double eps, const std::vector<cv::Point3d>& obj, const cv::Vec3d& rvec, const cv::Vec3d& tvec, const cv::Matx33d& camera, const cv::Vec<double, NUM_DIST_COEFF_TILT>& distor); /** remove points with projection outside the sensor array */ void removeInvalidPoints( std::vector<cv::Point2d>& imagePoints, std::vector<cv::Point3d>& objectPoints); /** add uniform distribute noise in [-halfWidthNoise, halfWidthNoise] to the image points and remove out of range points */ void addNoiseRemoveInvalidPoints( std::vector<cv::Point2f>& imagePoints, std::vector<cv::Point3f>& objectPoints, std::vector<cv::Point2f>& noisyImagePoints, double halfWidthNoise); }; /** Number of Pixel of the sensor */ const cv::Size cameraCalibrationTiltTest::m_imageSize(1600, 1200); /** Size of a pixel in mm */ const double cameraCalibrationTiltTest::m_pixelSize(.005); /** Diameter of the circle of confusion */ const double cameraCalibrationTiltTest::m_circleConfusionPixel(3); /** Focal length of the lens */ const double cameraCalibrationTiltTest::m_lensFocalLength(16.4); /** F-Number */ const double cameraCalibrationTiltTest::m_lensFNumber(8); /** Working distance */ const double cameraCalibrationTiltTest::m_objectDistance(200); /** Angle between optical axis and object plane normal */ const double cameraCalibrationTiltTest::m_planeTiltDegree(55); /** the calibration target are points on a square grid with this side length */ const double cameraCalibrationTiltTest::m_pointTargetDist(5); /** the calibration target has (2*n + 1) x (2*n + 1) points */ const int cameraCalibrationTiltTest::m_pointTargetNum(15); void cameraCalibrationTiltTest::SetUp() { m_imageDistance = opticalMap(m_objectDistance); m_imageTiltDegree = m_toDegree * atan2( m_imageDistance * tan(m_toRadian * m_planeTiltDegree), m_objectDistance); // half sensor height double tmp = .5 * (m_imageSize.height - 1) * m_pixelSize * cos(m_toRadian * m_imageTiltDegree); // y-Value of tilted sensor double yImage[2] = {tmp, -tmp}; // change in z because of the tilt tmp *= sin(m_toRadian * m_imageTiltDegree); // z-values of the sensor lower and upper corner double zImage[2] = { m_imageDistance + tmp, m_imageDistance - tmp}; // circle of confusion double circleConfusion = m_circleConfusionPixel*m_pixelSize; // aperture of the lense double aperture = m_lensFocalLength/m_lensFNumber; // near and far factor on the image side double nearFarFactorImage[2] = { aperture/(aperture - circleConfusion), aperture/(aperture + circleConfusion)}; // on the object side - points that determin the field of // view std::vector<cv::Vec3d> fovBottomTop(6); std::vector<cv::Vec3d>::iterator itFov = fovBottomTop.begin(); for (size_t iBottomTop = 0; iBottomTop < 2; ++iBottomTop) { // mapping sensor to field of view *itFov = cv::Vec3d(0,yImage[iBottomTop],zImage[iBottomTop]); *itFov *= magnification((*itFov)(2)); ++itFov; for (size_t iNearFar = 0; iNearFar < 2; ++iNearFar, ++itFov) { // scaling to the near and far distance on the // image side *itFov = cv::Vec3d(0,yImage[iBottomTop],zImage[iBottomTop]) * nearFarFactorImage[iNearFar]; // scaling to the object side *itFov *= magnification((*itFov)(2)); } } m_fovCenter.resize(3); m_fovNormal.resize(3); for (size_t i = 0; i < 3; ++i) { m_fovCenter[i] = .5*(fovBottomTop[i] + fovBottomTop[i+3]); m_fovNormal[i] = fovBottomTop[i+3] - fovBottomTop[i]; m_fovNormal[i] = cv::normalize(m_fovNormal[i]); m_fovNormal[i] = cv::Vec3d( m_fovNormal[i](0), -m_fovNormal[i](2), m_fovNormal[i](1)); // one target position in each plane m_pointTargetTvec.push_back(m_fovCenter[i]); cv::Vec3d rvec = cv::Vec3d(0,0,1).cross(m_fovNormal[i]); rvec = cv::normalize(rvec); rvec *= acos(m_fovNormal[i](2)); m_pointTargetRvec.push_back(rvec); } // calibration target size_t num = 2*m_pointTargetNum + 1; m_pointTarget.resize(num*num); std::vector<cv::Point3d>::iterator itTarget = m_pointTarget.begin(); for (int iY = -m_pointTargetNum; iY <= m_pointTargetNum; ++iY) { for (int iX = -m_pointTargetNum; iX <= m_pointTargetNum; ++iX, ++itTarget) { *itTarget = cv::Point3d(iX, iY, 0) * m_pointTargetDist; } } // oblique target positions // approximate distance to the near and far plane double dist = std::max( std::abs(m_fovNormal[0].dot(m_fovCenter[0] - m_fovCenter[1])), std::abs(m_fovNormal[0].dot(m_fovCenter[0] - m_fovCenter[2]))); // maximal angle such that target border "reaches" near and far plane double maxAngle = atan2(dist, m_pointTargetNum*m_pointTargetDist); std::vector<double> angle; angle.push_back(-maxAngle); angle.push_back(maxAngle); cv::Matx33d baseMatrix; cv::Rodrigues(m_pointTargetRvec.front(), baseMatrix); for (std::vector<double>::const_iterator itAngle = angle.begin(); itAngle != angle.end(); ++itAngle) { cv::Matx33d rmat; for (int i = 0; i < 2; ++i) { cv::Vec3d rvec(0,0,0); rvec(i) = *itAngle; cv::Rodrigues(rvec, rmat); rmat = baseMatrix*rmat; cv::Rodrigues(rmat, rvec); m_pointTargetTvec.push_back(m_fovCenter.front()); m_pointTargetRvec.push_back(rvec); } } // camera matrix double cx = .5 * (m_imageSize.width - 1); double cy = .5 * (m_imageSize.height - 1); double f = m_imageDistance/m_pixelSize; m_cameraMatrix = cv::Matx33d( f,0,cx, 0,f,cy, 0,0,1); // distortion coefficients m_distortionCoeff = cv::Vec<double, NUM_DIST_COEFF_TILT>::all(0); // tauX m_distortionCoeff(12) = -m_toRadian*m_imageTiltDegree; } void cameraCalibrationTiltTest::numericalDerivative( cv::Mat& jac, double eps, const std::vector<cv::Point3d>& obj, const cv::Vec3d& rvec, const cv::Vec3d& tvec, const cv::Matx33d& camera, const cv::Vec<double, NUM_DIST_COEFF_TILT>& distor) { cv::Vec3d r(rvec); cv::Vec3d t(tvec); cv::Matx33d cm(camera); cv::Vec<double, NUM_DIST_COEFF_TILT> dc(distor); double* param[10+NUM_DIST_COEFF_TILT] = { &r(0), &r(1), &r(2), &t(0), &t(1), &t(2), &cm(0,0), &cm(1,1), &cm(0,2), &cm(1,2), &dc(0), &dc(1), &dc(2), &dc(3), &dc(4), &dc(5), &dc(6), &dc(7), &dc(8), &dc(9), &dc(10), &dc(11), &dc(12), &dc(13)}; std::vector<cv::Point2d> pix0, pix1; double invEps = .5/eps; for (int col = 0; col < 10+NUM_DIST_COEFF_TILT; ++col) { double save = *(param[col]); *(param[col]) = save + eps; cv::projectPoints(obj, r, t, cm, dc, pix0); *(param[col]) = save - eps; cv::projectPoints(obj, r, t, cm, dc, pix1); *(param[col]) = save; std::vector<cv::Point2d>::const_iterator it0 = pix0.begin(); std::vector<cv::Point2d>::const_iterator it1 = pix1.begin(); int row = 0; for (;it0 != pix0.end(); ++it0, ++it1) { cv::Point2d d = invEps*(*it0 - *it1); jac.at<double>(row, col) = d.x; ++row; jac.at<double>(row, col) = d.y; ++row; } } } void cameraCalibrationTiltTest::removeInvalidPoints( std::vector<cv::Point2d>& imagePoints, std::vector<cv::Point3d>& objectPoints) { // remove object and imgage points out of range std::vector<cv::Point2d>::iterator itImg = imagePoints.begin(); std::vector<cv::Point3d>::iterator itObj = objectPoints.begin(); while (itImg != imagePoints.end()) { bool ok = itImg->x >= 0 && itImg->x <= m_imageSize.width - 1.0 && itImg->y >= 0 && itImg->y <= m_imageSize.height - 1.0; if (ok) { ++itImg; ++itObj; } else { itImg = imagePoints.erase(itImg); itObj = objectPoints.erase(itObj); } } } void cameraCalibrationTiltTest::addNoiseRemoveInvalidPoints( std::vector<cv::Point2f>& imagePoints, std::vector<cv::Point3f>& objectPoints, std::vector<cv::Point2f>& noisyImagePoints, double halfWidthNoise) { std::vector<cv::Point2f>::iterator itImg = imagePoints.begin(); std::vector<cv::Point3f>::iterator itObj = objectPoints.begin(); noisyImagePoints.clear(); noisyImagePoints.reserve(imagePoints.size()); while (itImg != imagePoints.end()) { cv::Point2f pix = *itImg + cv::Point2f( (float)m_rng.uniform(-halfWidthNoise, halfWidthNoise), (float)m_rng.uniform(-halfWidthNoise, halfWidthNoise)); bool ok = pix.x >= 0 && pix.x <= m_imageSize.width - 1.0 && pix.y >= 0 && pix.y <= m_imageSize.height - 1.0; if (ok) { noisyImagePoints.push_back(pix); ++itImg; ++itObj; } else { itImg = imagePoints.erase(itImg); itObj = objectPoints.erase(itObj); } } } TEST_F(cameraCalibrationTiltTest, projectPoints) { std::vector<cv::Point2d> imagePoints; std::vector<cv::Point3d> objectPoints = m_pointTarget; cv::Vec3d rvec = m_pointTargetRvec.front(); cv::Vec3d tvec = m_pointTargetTvec.front(); cv::Vec<double, NUM_DIST_COEFF_TILT> coeffNoiseHalfWidth( .1, .1, // k1 k2 .01, .01, // p1 p2 .001, .001, .001, .001, // k3 k4 k5 k6 .001, .001, .001, .001, // s1 s2 s3 s4 .01, .01); // tauX tauY for (size_t numTest = 0; numTest < 10; ++numTest) { // create random distortion coefficients cv::Vec<double, NUM_DIST_COEFF_TILT> distortionCoeff = m_distortionCoeff; randomDistortionCoeff(distortionCoeff, coeffNoiseHalfWidth); // projection cv::projectPoints( objectPoints, rvec, tvec, m_cameraMatrix, distortionCoeff, imagePoints); // remove object and imgage points out of range removeInvalidPoints(imagePoints, objectPoints); int numPoints = (int)imagePoints.size(); int numParams = 10 + distortionCoeff.rows; cv::Mat jacobian(2*numPoints, numParams, CV_64FC1); // projection and jacobian cv::projectPoints( objectPoints, rvec, tvec, m_cameraMatrix, distortionCoeff, imagePoints, jacobian); // numerical derivatives cv::Mat numericJacobian(2*numPoints, numParams, CV_64FC1); double eps = 1e-7; numericalDerivative( numericJacobian, eps, objectPoints, rvec, tvec, m_cameraMatrix, distortionCoeff); #if 0 for (size_t row = 0; row < 2; ++row) { std::cout << "------ Row = " << row << " ------\n"; for (size_t i = 0; i < 10+NUM_DIST_COEFF_TILT; ++i) { std::cout << i << " jac = " << jacobian.at<double>(row,i) << " num = " << numericJacobian.at<double>(row,i) << " rel. diff = " << abs(numericJacobian.at<double>(row,i) - jacobian.at<double>(row,i))/abs(numericJacobian.at<double>(row,i)) << "\n"; } } #endif // relative difference for large values (rvec and tvec) cv::Mat check = abs(jacobian(cv::Range::all(), cv::Range(0,6)) - numericJacobian(cv::Range::all(), cv::Range(0,6)))/ (1 + abs(jacobian(cv::Range::all(), cv::Range(0,6)))); double minVal, maxVal; cv::minMaxIdx(check, &minVal, &maxVal); EXPECT_LE(maxVal, .01); // absolute difference for distortion and camera matrix EXPECT_MAT_NEAR(jacobian(cv::Range::all(), cv::Range(6,numParams)), numericJacobian(cv::Range::all(), cv::Range(6,numParams)), 1e-5); } } TEST_F(cameraCalibrationTiltTest, undistortPoints) { cv::Vec<double, NUM_DIST_COEFF_TILT> coeffNoiseHalfWidth( .2, .1, // k1 k2 .01, .01, // p1 p2 .01, .01, .01, .01, // k3 k4 k5 k6 .001, .001, .001, .001, // s1 s2 s3 s4 .001, .001); // tauX tauY double step = 99; double toleranceBackProjection = 1e-5; for (size_t numTest = 0; numTest < 10; ++numTest) { cv::Vec<double, NUM_DIST_COEFF_TILT> distortionCoeff = m_distortionCoeff; randomDistortionCoeff(distortionCoeff, coeffNoiseHalfWidth); // distorted points std::vector<cv::Point2d> distorted; for (double x = 0; x <= m_imageSize.width-1; x += step) for (double y = 0; y <= m_imageSize.height-1; y += step) distorted.push_back(cv::Point2d(x,y)); std::vector<cv::Point2d> normalizedUndistorted; // undistort cv::undistortPoints(distorted, normalizedUndistorted, m_cameraMatrix, distortionCoeff); // copy normalized points to 3D std::vector<cv::Point3d> objectPoints; for (std::vector<cv::Point2d>::const_iterator itPnt = normalizedUndistorted.begin(); itPnt != normalizedUndistorted.end(); ++itPnt) objectPoints.push_back(cv::Point3d(itPnt->x, itPnt->y, 1)); // project std::vector<cv::Point2d> imagePoints(objectPoints.size()); cv::projectPoints(objectPoints, cv::Vec3d(0,0,0), cv::Vec3d(0,0,0), m_cameraMatrix, distortionCoeff, imagePoints); EXPECT_MAT_NEAR(distorted, imagePoints, toleranceBackProjection); } } template <typename INPUT, typename ESTIMATE> void show(const std::string& name, const INPUT in, const ESTIMATE est) { std::cout << name << " = " << est << " (init = " << in << ", diff = " << est-in << ")\n"; } template <typename INPUT> void showVec(const std::string& name, const INPUT& in, const cv::Mat& est) { for (size_t i = 0; i < in.channels; ++i) { std::stringstream ss; ss << name << "[" << i << "]"; show(ss.str(), in(i), est.at<double>(i)); } } /** For given camera matrix and distortion coefficients - project point target in different positions onto the sensor - add pixel noise - estimate camera modell with noisy measurements - compare result with initial model parameter Parameter are differently affected by the noise */ TEST_F(cameraCalibrationTiltTest, calibrateCamera) { cv::Vec<double, NUM_DIST_COEFF_TILT> coeffNoiseHalfWidth( .2, .1, // k1 k2 .01, .01, // p1 p2 0, 0, 0, 0, // k3 k4 k5 k6 .001, .001, .001, .001, // s1 s2 s3 s4 .001, .001); // tauX tauY double pixelNoiseHalfWidth = .5; std::vector<cv::Point3f> pointTarget; pointTarget.reserve(m_pointTarget.size()); for (std::vector<cv::Point3d>::const_iterator it = m_pointTarget.begin(); it != m_pointTarget.end(); ++it) pointTarget.push_back(cv::Point3f( (float)(it->x), (float)(it->y), (float)(it->z))); for (size_t numTest = 0; numTest < 5; ++numTest) { // create random distortion coefficients cv::Vec<double, NUM_DIST_COEFF_TILT> distortionCoeff = m_distortionCoeff; randomDistortionCoeff(distortionCoeff, coeffNoiseHalfWidth); // container for calibration data std::vector<std::vector<cv::Point3f> > viewsObjectPoints; std::vector<std::vector<cv::Point2f> > viewsImagePoints; std::vector<std::vector<cv::Point2f> > viewsNoisyImagePoints; // simulate calibration data with projectPoints std::vector<cv::Vec3d>::const_iterator itRvec = m_pointTargetRvec.begin(); std::vector<cv::Vec3d>::const_iterator itTvec = m_pointTargetTvec.begin(); // loop over different views for (;itRvec != m_pointTargetRvec.end(); ++ itRvec, ++itTvec) { std::vector<cv::Point3f> objectPoints(pointTarget); std::vector<cv::Point2f> imagePoints; std::vector<cv::Point2f> noisyImagePoints; // project calibration target to sensor cv::projectPoints( objectPoints, *itRvec, *itTvec, m_cameraMatrix, distortionCoeff, imagePoints); // remove invisible points addNoiseRemoveInvalidPoints( imagePoints, objectPoints, noisyImagePoints, pixelNoiseHalfWidth); // add data for view viewsNoisyImagePoints.push_back(noisyImagePoints); viewsImagePoints.push_back(imagePoints); viewsObjectPoints.push_back(objectPoints); } // Output std::vector<cv::Mat> outRvecs, outTvecs; cv::Mat outCameraMatrix(3, 3, CV_64F, cv::Scalar::all(1)), outDistCoeff; // Stopping criteria cv::TermCriteria stop( cv::TermCriteria::COUNT+cv::TermCriteria::EPS, 50000, 1e-14); // modell coice int flag = cv::CALIB_FIX_ASPECT_RATIO | // cv::CALIB_RATIONAL_MODEL | cv::CALIB_FIX_K3 | // cv::CALIB_FIX_K6 | cv::CALIB_THIN_PRISM_MODEL | cv::CALIB_TILTED_MODEL; // estimate double backProjErr = cv::calibrateCamera( viewsObjectPoints, viewsNoisyImagePoints, m_imageSize, outCameraMatrix, outDistCoeff, outRvecs, outTvecs, flag, stop); EXPECT_LE(backProjErr, pixelNoiseHalfWidth); #if 0 std::cout << "------ estimate ------\n"; std::cout << "back projection error = " << backProjErr << "\n"; std::cout << "points per view = {" << viewsObjectPoints.front().size(); for (size_t i = 1; i < viewsObjectPoints.size(); ++i) std::cout << ", " << viewsObjectPoints[i].size(); std::cout << "}\n"; show("fx", m_cameraMatrix(0,0), outCameraMatrix.at<double>(0,0)); show("fy", m_cameraMatrix(1,1), outCameraMatrix.at<double>(1,1)); show("cx", m_cameraMatrix(0,2), outCameraMatrix.at<double>(0,2)); show("cy", m_cameraMatrix(1,2), outCameraMatrix.at<double>(1,2)); showVec("distor", distortionCoeff, outDistCoeff); #endif if (pixelNoiseHalfWidth > 0) { double tolRvec = pixelNoiseHalfWidth; double tolTvec = m_objectDistance * tolRvec; // back projection error for (size_t i = 0; i < viewsNoisyImagePoints.size(); ++i) { double dRvec = norm( m_pointTargetRvec[i] - cv::Vec3d( outRvecs[i].at<double>(0), outRvecs[i].at<double>(1), outRvecs[i].at<double>(2))); // std::cout << dRvec << " " << tolRvec << "\n"; EXPECT_LE(dRvec, tolRvec); double dTvec = norm( m_pointTargetTvec[i] - cv::Vec3d( outTvecs[i].at<double>(0), outTvecs[i].at<double>(1), outTvecs[i].at<double>(2))); // std::cout << dTvec << " " << tolTvec << "\n"; EXPECT_LE(dTvec, tolTvec); std::vector<cv::Point2f> backProjection; cv::projectPoints( viewsObjectPoints[i], outRvecs[i], outTvecs[i], outCameraMatrix, outDistCoeff, backProjection); EXPECT_MAT_NEAR(backProjection, viewsNoisyImagePoints[i], 1.5*pixelNoiseHalfWidth); EXPECT_MAT_NEAR(backProjection, viewsImagePoints[i], 1.5*pixelNoiseHalfWidth); } } pixelNoiseHalfWidth *= .25; } }