/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace std; const int draw_shift_bits = 4; const int draw_multiplier = 1 << draw_shift_bits; namespace cv { /* * Functions to draw keypoints and matches. */ static inline void _drawKeypoint( Mat& img, const KeyPoint& p, const Scalar& color, int flags ) { CV_Assert( !img.empty() ); Point center( cvRound(p.pt.x * draw_multiplier), cvRound(p.pt.y * draw_multiplier) ); if( flags & DrawMatchesFlags::DRAW_RICH_KEYPOINTS ) { int radius = cvRound(p.size/2 * draw_multiplier); // KeyPoint::size is a diameter // draw the circles around keypoints with the keypoints size circle( img, center, radius, color, 1, CV_AA, draw_shift_bits ); // draw orientation of the keypoint, if it is applicable if( p.angle != -1 ) { float srcAngleRad = p.angle*(float)CV_PI/180.f; Point orient( cvRound(cos(srcAngleRad)*radius ), cvRound(sin(srcAngleRad)*radius ) ); line( img, center, center+orient, color, 1, CV_AA, draw_shift_bits ); } #if 0 else { // draw center with R=1 int radius = 1 * draw_multiplier; circle( img, center, radius, color, 1, CV_AA, draw_shift_bits ); } #endif } else { // draw center with R=3 int radius = 3 * draw_multiplier; circle( img, center, radius, color, 1, CV_AA, draw_shift_bits ); } } void drawKeypoints( const Mat& image, const vector<KeyPoint>& keypoints, Mat& outImage, const Scalar& _color, int flags ) { if( !(flags & DrawMatchesFlags::DRAW_OVER_OUTIMG) ) { if( image.type() == CV_8UC3 ) { image.copyTo( outImage ); } else if( image.type() == CV_8UC1 ) { cvtColor( image, outImage, CV_GRAY2BGR ); } else { CV_Error( CV_StsBadArg, "Incorrect type of input image.\n" ); } } RNG& rng=theRNG(); bool isRandColor = _color == Scalar::all(-1); CV_Assert( !outImage.empty() ); vector<KeyPoint>::const_iterator it = keypoints.begin(), end = keypoints.end(); for( ; it != end; ++it ) { Scalar color = isRandColor ? Scalar(rng(256), rng(256), rng(256)) : _color; _drawKeypoint( outImage, *it, color, flags ); } } static void _prepareImgAndDrawKeypoints( const Mat& img1, const vector<KeyPoint>& keypoints1, const Mat& img2, const vector<KeyPoint>& keypoints2, Mat& outImg, Mat& outImg1, Mat& outImg2, const Scalar& singlePointColor, int flags ) { Size size( img1.cols + img2.cols, MAX(img1.rows, img2.rows) ); if( flags & DrawMatchesFlags::DRAW_OVER_OUTIMG ) { if( size.width > outImg.cols || size.height > outImg.rows ) CV_Error( CV_StsBadSize, "outImg has size less than need to draw img1 and img2 together" ); outImg1 = outImg( Rect(0, 0, img1.cols, img1.rows) ); outImg2 = outImg( Rect(img1.cols, 0, img2.cols, img2.rows) ); } else { outImg.create( size, CV_MAKETYPE(img1.depth(), 3) ); outImg = Scalar::all(0); outImg1 = outImg( Rect(0, 0, img1.cols, img1.rows) ); outImg2 = outImg( Rect(img1.cols, 0, img2.cols, img2.rows) ); if( img1.type() == CV_8U ) cvtColor( img1, outImg1, CV_GRAY2BGR ); else img1.copyTo( outImg1 ); if( img2.type() == CV_8U ) cvtColor( img2, outImg2, CV_GRAY2BGR ); else img2.copyTo( outImg2 ); } // draw keypoints if( !(flags & DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS) ) { Mat _outImg1 = outImg( Rect(0, 0, img1.cols, img1.rows) ); drawKeypoints( _outImg1, keypoints1, _outImg1, singlePointColor, flags | DrawMatchesFlags::DRAW_OVER_OUTIMG ); Mat _outImg2 = outImg( Rect(img1.cols, 0, img2.cols, img2.rows) ); drawKeypoints( _outImg2, keypoints2, _outImg2, singlePointColor, flags | DrawMatchesFlags::DRAW_OVER_OUTIMG ); } } static inline void _drawMatch( Mat& outImg, Mat& outImg1, Mat& outImg2 , const KeyPoint& kp1, const KeyPoint& kp2, const Scalar& matchColor, int flags ) { RNG& rng = theRNG(); bool isRandMatchColor = matchColor == Scalar::all(-1); Scalar color = isRandMatchColor ? Scalar( rng(256), rng(256), rng(256) ) : matchColor; _drawKeypoint( outImg1, kp1, color, flags ); _drawKeypoint( outImg2, kp2, color, flags ); Point2f pt1 = kp1.pt, pt2 = kp2.pt, dpt2 = Point2f( std::min(pt2.x+outImg1.cols, float(outImg.cols-1)), pt2.y ); line( outImg, Point(cvRound(pt1.x*draw_multiplier), cvRound(pt1.y*draw_multiplier)), Point(cvRound(dpt2.x*draw_multiplier), cvRound(dpt2.y*draw_multiplier)), color, 1, CV_AA, draw_shift_bits ); } void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1, const Mat& img2, const vector<KeyPoint>& keypoints2, const vector<DMatch>& matches1to2, Mat& outImg, const Scalar& matchColor, const Scalar& singlePointColor, const vector<char>& matchesMask, int flags ) { if( !matchesMask.empty() && matchesMask.size() != matches1to2.size() ) CV_Error( CV_StsBadSize, "matchesMask must have the same size as matches1to2" ); Mat outImg1, outImg2; _prepareImgAndDrawKeypoints( img1, keypoints1, img2, keypoints2, outImg, outImg1, outImg2, singlePointColor, flags ); // draw matches for( size_t m = 0; m < matches1to2.size(); m++ ) { if( matchesMask.empty() || matchesMask[m] ) { int i1 = matches1to2[m].queryIdx; int i2 = matches1to2[m].trainIdx; CV_Assert(i1 >= 0 && i1 < static_cast<int>(keypoints1.size())); CV_Assert(i2 >= 0 && i2 < static_cast<int>(keypoints2.size())); const KeyPoint &kp1 = keypoints1[i1], &kp2 = keypoints2[i2]; _drawMatch( outImg, outImg1, outImg2, kp1, kp2, matchColor, flags ); } } } void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1, const Mat& img2, const vector<KeyPoint>& keypoints2, const vector<vector<DMatch> >& matches1to2, Mat& outImg, const Scalar& matchColor, const Scalar& singlePointColor, const vector<vector<char> >& matchesMask, int flags ) { if( !matchesMask.empty() && matchesMask.size() != matches1to2.size() ) CV_Error( CV_StsBadSize, "matchesMask must have the same size as matches1to2" ); Mat outImg1, outImg2; _prepareImgAndDrawKeypoints( img1, keypoints1, img2, keypoints2, outImg, outImg1, outImg2, singlePointColor, flags ); // draw matches for( size_t i = 0; i < matches1to2.size(); i++ ) { for( size_t j = 0; j < matches1to2[i].size(); j++ ) { int i1 = matches1to2[i][j].queryIdx; int i2 = matches1to2[i][j].trainIdx; if( matchesMask.empty() || matchesMask[i][j] ) { const KeyPoint &kp1 = keypoints1[i1], &kp2 = keypoints2[i2]; _drawMatch( outImg, outImg1, outImg2, kp1, kp2, matchColor, flags ); } } } } }