#include "opencv2/core.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/ml.hpp" #include "opencv2/highgui.hpp" #ifdef HAVE_OPENCV_OCL #define _OCL_KNN_ 1 // select whether using ocl::KNN method or not, default is using #define _OCL_SVM_ 1 // select whether using ocl::svm method or not, default is using #include "opencv2/ocl/ocl.hpp" #endif #include <stdio.h> using namespace std; using namespace cv; using namespace cv::ml; const Scalar WHITE_COLOR = Scalar(255,255,255); const string winName = "points"; const int testStep = 5; Mat img, imgDst; RNG rng; vector<Point> trainedPoints; vector<int> trainedPointsMarkers; const int MAX_CLASSES = 2; vector<Vec3b> classColors(MAX_CLASSES); int currentClass = 0; vector<int> classCounters(MAX_CLASSES); #define _NBC_ 1 // normal Bayessian classifier #define _KNN_ 1 // k nearest neighbors classifier #define _SVM_ 1 // support vectors machine #define _DT_ 1 // decision tree #define _BT_ 1 // ADA Boost #define _GBT_ 0 // gradient boosted trees #define _RF_ 1 // random forest #define _ANN_ 1 // artificial neural networks #define _EM_ 1 // expectation-maximization static void on_mouse( int event, int x, int y, int /*flags*/, void* ) { if( img.empty() ) return; int updateFlag = 0; if( event == EVENT_LBUTTONUP ) { trainedPoints.push_back( Point(x,y) ); trainedPointsMarkers.push_back( currentClass ); classCounters[currentClass]++; updateFlag = true; } //draw if( updateFlag ) { img = Scalar::all(0); // draw points for( size_t i = 0; i < trainedPoints.size(); i++ ) { Vec3b c = classColors[trainedPointsMarkers[i]]; circle( img, trainedPoints[i], 5, Scalar(c), -1 ); } imshow( winName, img ); } } static Mat prepare_train_samples(const vector<Point>& pts) { Mat samples; Mat(pts).reshape(1, (int)pts.size()).convertTo(samples, CV_32F); return samples; } static Ptr<TrainData> prepare_train_data() { Mat samples = prepare_train_samples(trainedPoints); return TrainData::create(samples, ROW_SAMPLE, Mat(trainedPointsMarkers)); } static void predict_and_paint(const Ptr<StatModel>& model, Mat& dst) { Mat testSample( 1, 2, CV_32FC1 ); for( int y = 0; y < img.rows; y += testStep ) { for( int x = 0; x < img.cols; x += testStep ) { testSample.at<float>(0) = (float)x; testSample.at<float>(1) = (float)y; int response = (int)model->predict( testSample ); dst.at<Vec3b>(y, x) = classColors[response]; } } } #if _NBC_ static void find_decision_boundary_NBC() { // learn classifier Ptr<NormalBayesClassifier> normalBayesClassifier = StatModel::train<NormalBayesClassifier>(prepare_train_data()); predict_and_paint(normalBayesClassifier, imgDst); } #endif #if _KNN_ static void find_decision_boundary_KNN( int K ) { Ptr<KNearest> knn = KNearest::create(); knn->setDefaultK(K); knn->setIsClassifier(true); knn->train(prepare_train_data()); predict_and_paint(knn, imgDst); } #endif #if _SVM_ static void find_decision_boundary_SVM( double C ) { Ptr<SVM> svm = SVM::create(); svm->setType(SVM::C_SVC); svm->setKernel(SVM::POLY); //SVM::LINEAR; svm->setDegree(0.5); svm->setGamma(1); svm->setCoef0(1); svm->setNu(0.5); svm->setP(0); svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 1000, 0.01)); svm->setC(C); svm->train(prepare_train_data()); predict_and_paint(svm, imgDst); Mat sv = svm->getSupportVectors(); for( int i = 0; i < sv.rows; i++ ) { const float* supportVector = sv.ptr<float>(i); circle( imgDst, Point(saturate_cast<int>(supportVector[0]),saturate_cast<int>(supportVector[1])), 5, Scalar(255,255,255), -1 ); } } #endif #if _DT_ static void find_decision_boundary_DT() { Ptr<DTrees> dtree = DTrees::create(); dtree->setMaxDepth(8); dtree->setMinSampleCount(2); dtree->setUseSurrogates(false); dtree->setCVFolds(0); // the number of cross-validation folds dtree->setUse1SERule(false); dtree->setTruncatePrunedTree(false); dtree->train(prepare_train_data()); predict_and_paint(dtree, imgDst); } #endif #if _BT_ static void find_decision_boundary_BT() { Ptr<Boost> boost = Boost::create(); boost->setBoostType(Boost::DISCRETE); boost->setWeakCount(100); boost->setWeightTrimRate(0.95); boost->setMaxDepth(2); boost->setUseSurrogates(false); boost->setPriors(Mat()); boost->train(prepare_train_data()); predict_and_paint(boost, imgDst); } #endif #if _GBT_ static void find_decision_boundary_GBT() { GBTrees::Params params( GBTrees::DEVIANCE_LOSS, // loss_function_type 100, // weak_count 0.1f, // shrinkage 1.0f, // subsample_portion 2, // max_depth false // use_surrogates ) ); Ptr<GBTrees> gbtrees = StatModel::train<GBTrees>(prepare_train_data(), params); predict_and_paint(gbtrees, imgDst); } #endif #if _RF_ static void find_decision_boundary_RF() { Ptr<RTrees> rtrees = RTrees::create(); rtrees->setMaxDepth(4); rtrees->setMinSampleCount(2); rtrees->setRegressionAccuracy(0.f); rtrees->setUseSurrogates(false); rtrees->setMaxCategories(16); rtrees->setPriors(Mat()); rtrees->setCalculateVarImportance(false); rtrees->setActiveVarCount(1); rtrees->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 5, 0)); rtrees->train(prepare_train_data()); predict_and_paint(rtrees, imgDst); } #endif #if _ANN_ static void find_decision_boundary_ANN( const Mat& layer_sizes ) { Mat trainClasses = Mat::zeros( (int)trainedPoints.size(), (int)classColors.size(), CV_32FC1 ); for( int i = 0; i < trainClasses.rows; i++ ) { trainClasses.at<float>(i, trainedPointsMarkers[i]) = 1.f; } Mat samples = prepare_train_samples(trainedPoints); Ptr<TrainData> tdata = TrainData::create(samples, ROW_SAMPLE, trainClasses); Ptr<ANN_MLP> ann = ANN_MLP::create(); ann->setLayerSizes(layer_sizes); ann->setActivationFunction(ANN_MLP::SIGMOID_SYM, 1, 1); ann->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 300, FLT_EPSILON)); ann->setTrainMethod(ANN_MLP::BACKPROP, 0.001); ann->train(tdata); predict_and_paint(ann, imgDst); } #endif #if _EM_ static void find_decision_boundary_EM() { img.copyTo( imgDst ); Mat samples = prepare_train_samples(trainedPoints); int i, j, nmodels = (int)classColors.size(); vector<Ptr<EM> > em_models(nmodels); Mat modelSamples; for( i = 0; i < nmodels; i++ ) { const int componentCount = 3; modelSamples.release(); for( j = 0; j < samples.rows; j++ ) { if( trainedPointsMarkers[j] == i ) modelSamples.push_back(samples.row(j)); } // learn models if( !modelSamples.empty() ) { Ptr<EM> em = EM::create(); em->setClustersNumber(componentCount); em->setCovarianceMatrixType(EM::COV_MAT_DIAGONAL); em->trainEM(modelSamples, noArray(), noArray(), noArray()); em_models[i] = em; } } // classify coordinate plane points using the bayes classifier, i.e. // y(x) = arg max_i=1_modelsCount likelihoods_i(x) Mat testSample(1, 2, CV_32FC1 ); Mat logLikelihoods(1, nmodels, CV_64FC1, Scalar(-DBL_MAX)); for( int y = 0; y < img.rows; y += testStep ) { for( int x = 0; x < img.cols; x += testStep ) { testSample.at<float>(0) = (float)x; testSample.at<float>(1) = (float)y; for( i = 0; i < nmodels; i++ ) { if( !em_models[i].empty() ) logLikelihoods.at<double>(i) = em_models[i]->predict2(testSample, noArray())[0]; } Point maxLoc; minMaxLoc(logLikelihoods, 0, 0, 0, &maxLoc); imgDst.at<Vec3b>(y, x) = classColors[maxLoc.x]; } } } #endif int main() { cout << "Use:" << endl << " key '0' .. '1' - switch to class #n" << endl << " left mouse button - to add new point;" << endl << " key 'r' - to run the ML model;" << endl << " key 'i' - to init (clear) the data." << endl << endl; cv::namedWindow( "points", 1 ); img.create( 480, 640, CV_8UC3 ); imgDst.create( 480, 640, CV_8UC3 ); imshow( "points", img ); setMouseCallback( "points", on_mouse ); classColors[0] = Vec3b(0, 255, 0); classColors[1] = Vec3b(0, 0, 255); for(;;) { uchar key = (uchar)waitKey(); if( key == 27 ) break; if( key == 'i' ) // init { img = Scalar::all(0); trainedPoints.clear(); trainedPointsMarkers.clear(); classCounters.assign(MAX_CLASSES, 0); imshow( winName, img ); } if( key == '0' || key == '1' ) { currentClass = key - '0'; } if( key == 'r' ) // run { double minVal = 0; minMaxLoc(classCounters, &minVal, 0, 0, 0); if( minVal == 0 ) { printf("each class should have at least 1 point\n"); continue; } img.copyTo( imgDst ); #if _NBC_ find_decision_boundary_NBC(); imshow( "NormalBayesClassifier", imgDst ); #endif #if _KNN_ find_decision_boundary_KNN( 3 ); imshow( "kNN", imgDst ); find_decision_boundary_KNN( 15 ); imshow( "kNN2", imgDst ); #endif #if _SVM_ //(1)-(2)separable and not sets find_decision_boundary_SVM( 1 ); imshow( "classificationSVM1", imgDst ); find_decision_boundary_SVM( 10 ); imshow( "classificationSVM2", imgDst ); #endif #if _DT_ find_decision_boundary_DT(); imshow( "DT", imgDst ); #endif #if _BT_ find_decision_boundary_BT(); imshow( "BT", imgDst); #endif #if _GBT_ find_decision_boundary_GBT(); imshow( "GBT", imgDst); #endif #if _RF_ find_decision_boundary_RF(); imshow( "RF", imgDst); #endif #if _ANN_ Mat layer_sizes1( 1, 3, CV_32SC1 ); layer_sizes1.at<int>(0) = 2; layer_sizes1.at<int>(1) = 5; layer_sizes1.at<int>(2) = (int)classColors.size(); find_decision_boundary_ANN( layer_sizes1 ); imshow( "ANN", imgDst ); #endif #if _EM_ find_decision_boundary_EM(); imshow( "EM", imgDst ); #endif } } return 0; }