//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
//    Niko Li, newlife20080214@gmail.com
//    Wang Weiyan, wangweiyanster@gmail.com
//    Jia Haipeng, jiahaipeng95@gmail.com
//    Nathan, liujun@multicorewareinc.com
//    Peng Xiao, pengxiao@outlook.com
//    Erping Pang, erping@multicorewareinc.com
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//

#define CV_HAAR_FEATURE_MAX           3

#define calc_sum(rect,offset)        (sum[(rect).p0+offset] - sum[(rect).p1+offset] - sum[(rect).p2+offset] + sum[(rect).p3+offset])
#define calc_sum1(rect,offset,i)     (sum[(rect).p0[i]+offset] - sum[(rect).p1[i]+offset] - sum[(rect).p2[i]+offset] + sum[(rect).p3[i]+offset])

typedef int   sumtype;
typedef float sqsumtype;

#ifndef STUMP_BASED
#define STUMP_BASED 1
#endif

typedef struct __attribute__((aligned (128) )) GpuHidHaarTreeNode
{
    int p[CV_HAAR_FEATURE_MAX][4] __attribute__((aligned (64)));
    float weight[CV_HAAR_FEATURE_MAX];
    float threshold;
    float alpha[3] __attribute__((aligned (16)));
    int left __attribute__((aligned (4)));
    int right __attribute__((aligned (4)));
}
GpuHidHaarTreeNode;


typedef struct __attribute__((aligned (32))) GpuHidHaarClassifier
{
    int count __attribute__((aligned (4)));
    GpuHidHaarTreeNode* node __attribute__((aligned (8)));
    float* alpha __attribute__((aligned (8)));
}
GpuHidHaarClassifier;


typedef struct __attribute__((aligned (64))) GpuHidHaarStageClassifier
{
    int  count __attribute__((aligned (4)));
    float threshold __attribute__((aligned (4)));
    int two_rects __attribute__((aligned (4)));
    int reserved0 __attribute__((aligned (8)));
    int reserved1 __attribute__((aligned (8)));
    int reserved2 __attribute__((aligned (8)));
    int reserved3 __attribute__((aligned (8)));
}
GpuHidHaarStageClassifier;


typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade
{
    int  count __attribute__((aligned (4)));
    int  is_stump_based __attribute__((aligned (4)));
    int  has_tilted_features __attribute__((aligned (4)));
    int  is_tree __attribute__((aligned (4)));
    int pq0 __attribute__((aligned (4)));
    int pq1 __attribute__((aligned (4)));
    int pq2 __attribute__((aligned (4)));
    int pq3 __attribute__((aligned (4)));
    int p0 __attribute__((aligned (4)));
    int p1 __attribute__((aligned (4)));
    int p2 __attribute__((aligned (4)));
    int p3 __attribute__((aligned (4)));
    float inv_window_area __attribute__((aligned (4)));
} GpuHidHaarClassifierCascade;


#ifdef PACKED_CLASSIFIER
// this code is scalar, one pixel -> one workitem
__kernel void gpuRunHaarClassifierCascadePacked(
    global const GpuHidHaarStageClassifier * stagecascadeptr,
    global const int4 * info,
    global const GpuHidHaarTreeNode * nodeptr,
    global const int * restrict sum,
    global const float * restrict sqsum,
    volatile global int4 * candidate,
    const int pixelstep,
    const int loopcount,
    const int start_stage,
    const int split_stage,
    const int end_stage,
    const int startnode,
    const int splitnode,
    const int4 p,
    const int4 pq,
    const float correction,
    global const int* pNodesPK,
    global const int4* pWGInfo
    )

{
    int     gid = (int)get_group_id(0);
    int     lid_x = (int)get_local_id(0);
    int     lid_y = (int)get_local_id(1);
    int     lid = lid_y*LSx+lid_x;
    int4    WGInfo = pWGInfo[WGSTART+gid];
    int     GroupX = (WGInfo.y >> 16)&0xFFFF;
    int     GroupY = (WGInfo.y >> 0 )& 0xFFFF;
    int     Width  = (WGInfo.x >> 16)&0xFFFF;
    int     Height = (WGInfo.x >> 0 )& 0xFFFF;
    int     ImgOffset = WGInfo.z;
    float   ScaleFactor = as_float(WGInfo.w);

#define DATA_SIZE_X (PIXEL_STEP*LSx+WND_SIZE_X)
#define DATA_SIZE_Y (PIXEL_STEP*LSy+WND_SIZE_Y)
#define DATA_SIZE (DATA_SIZE_X*DATA_SIZE_Y)

    local int SumL[DATA_SIZE];

    // read input data window into local mem
    for(int i = 0; i<DATA_SIZE; i+=(LSx*LSy))
    {
        int     index = i+lid; // index in shared local memory
        if(index<DATA_SIZE)
        {// calc global x,y coordinat and read data from there
            int     x = min(GroupX + (index % (DATA_SIZE_X)),Width-1+WND_SIZE_X);
            int     y = min(GroupY + (index / (DATA_SIZE_X)),Height-1+WND_SIZE_Y);
            SumL[index] = sum[ImgOffset+y*pixelstep+x];
        }
    }
    barrier(CLK_LOCAL_MEM_FENCE);

    // calc variance_norm_factor for all stages
    float   variance_norm_factor;
    int     nodecounter= startnode;
    int4    info1 = p;
    int4    info2 = pq;

    // calc processed ROI coordinate in local mem
    int     xl = lid_x*PIXEL_STEP;
    int     yl = lid_y*PIXEL_STEP;

    {// calc variance_norm_factor for all stages
        int     OffsetLocal =          yl * DATA_SIZE_X +         xl;
        int     OffsetGlobal = (GroupY+yl)* pixelstep   + (GroupX+xl);

        // add shift to get position on scaled image
        OffsetGlobal += ImgOffset;

        float   mean =
            SumL[info1.y*DATA_SIZE_X+info1.x+OffsetLocal] -
            SumL[info1.y*DATA_SIZE_X+info1.z+OffsetLocal] -
            SumL[info1.w*DATA_SIZE_X+info1.x+OffsetLocal] +
            SumL[info1.w*DATA_SIZE_X+info1.z+OffsetLocal];
        float sq =
            sqsum[info2.y*pixelstep+info2.x+OffsetGlobal] -
            sqsum[info2.y*pixelstep+info2.z+OffsetGlobal] -
            sqsum[info2.w*pixelstep+info2.x+OffsetGlobal] +
            sqsum[info2.w*pixelstep+info2.z+OffsetGlobal];

        mean *= correction;
        sq *= correction;

        variance_norm_factor = sq - mean * mean;
        variance_norm_factor = (variance_norm_factor >=0.f) ? sqrt(variance_norm_factor) : 1.f;
    }// end calc variance_norm_factor for all stages

    int result = (1.0f>0.0f);
    for(int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++ )
    {// iterate until candidate is valid
        float   stage_sum = 0.0f;
        int2    stageinfo = *(global int2*)(stagecascadeptr+stageloop);
        float   stagethreshold = as_float(stageinfo.y);
        int     lcl_off = (lid_y*DATA_SIZE_X)+(lid_x);
        for(int nodeloop = 0; nodeloop < stageinfo.x; nodecounter++,nodeloop++ )
        {
        // simple macro to extract shorts from int
#define M0(_t) ((_t)&0xFFFF)
#define M1(_t) (((_t)>>16)&0xFFFF)
            // load packed node data from global memory (L3) into registers
            global const int4* pN = (__global int4*)(pNodesPK+nodecounter*NODE_SIZE);
            int4    n0 = pN[0];
            int4    n1 = pN[1];
            int4    n2 = pN[2];
            float   nodethreshold  = as_float(n2.y) * variance_norm_factor;
            // calc sum of intensity pixels according to classifier node information
            float classsum =
                (SumL[M0(n0.x)+lcl_off] - SumL[M1(n0.x)+lcl_off] - SumL[M0(n0.y)+lcl_off] + SumL[M1(n0.y)+lcl_off]) * as_float(n1.z) +
                (SumL[M0(n0.z)+lcl_off] - SumL[M1(n0.z)+lcl_off] - SumL[M0(n0.w)+lcl_off] + SumL[M1(n0.w)+lcl_off]) * as_float(n1.w) +
                (SumL[M0(n1.x)+lcl_off] - SumL[M1(n1.x)+lcl_off] - SumL[M0(n1.y)+lcl_off] + SumL[M1(n1.y)+lcl_off]) * as_float(n2.x);
            //accumulate stage response
            stage_sum += (classsum >= nodethreshold) ? as_float(n2.w) : as_float(n2.z);
        }
        result = (stage_sum >= stagethreshold);
    }// next stage if needed

    if(result)
    {// all stages will be passed and there is a detected face on the tested position
        int index = 1+atomic_inc((volatile global int*)candidate); //get index to write global data with face info
        if(index<OUTPUTSZ)
        {
            int     x = GroupX+xl;
            int     y = GroupY+yl;
            int4 candidate_result;
            candidate_result.x = convert_int_rtn(x*ScaleFactor);
            candidate_result.y = convert_int_rtn(y*ScaleFactor);
            candidate_result.z = convert_int_rtn(ScaleFactor*WND_SIZE_X);
            candidate_result.w = convert_int_rtn(ScaleFactor*WND_SIZE_Y);
            candidate[index] = candidate_result;
        }
    }
}//end gpuRunHaarClassifierCascade
#else

__kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCascade(
    global GpuHidHaarStageClassifier * stagecascadeptr,
    global int4 * info,
    global GpuHidHaarTreeNode * nodeptr,
    global const int * restrict sum1,
    global const float * restrict sqsum1,
    global int4 * candidate,
    const int pixelstep,
    const int loopcount,
    const int start_stage,
    const int split_stage,
    const int end_stage,
    const int startnode,
    const int splitnode,
    const int4 p,
    const int4 pq,
    const float correction)
{
    int grpszx = get_local_size(0);
    int grpszy = get_local_size(1);
    int grpnumx = get_num_groups(0);
    int grpidx = get_group_id(0);
    int lclidx = get_local_id(0);
    int lclidy = get_local_id(1);

    int lcl_sz = mul24(grpszx,grpszy);
    int lcl_id = mad24(lclidy,grpszx,lclidx);

    __local int lclshare[1024];
    __local int* lcldata = lclshare;//for save win data
    __local int* glboutindex = lcldata + 28*28;//for save global out index
    __local int* lclcount = glboutindex + 1;//for save the numuber of temp pass pixel
    __local int* lcloutindex = lclcount + 1;//for save info of temp pass pixel
    __local float* partialsum = (__local float*)(lcloutindex + (lcl_sz<<1));
    glboutindex[0]=0;
    int outputoff = mul24(grpidx,256);

    //assume window size is 20X20
#define WINDOWSIZE 20+1
    //make sure readwidth is the multiple of 4
    //ystep =1, from host code
    int readwidth = ((grpszx-1 + WINDOWSIZE+3)>>2)<<2;
    int readheight = grpszy-1+WINDOWSIZE;
    int read_horiz_cnt = readwidth >> 2;//each read int4
    int total_read = mul24(read_horiz_cnt,readheight);
    int read_loop = (total_read + lcl_sz - 1) >> 6;
    candidate[outputoff+(lcl_id<<2)] = (int4)0;
    candidate[outputoff+(lcl_id<<2)+1] = (int4)0;
    candidate[outputoff+(lcl_id<<2)+2] = (int4)0;
    candidate[outputoff+(lcl_id<<2)+3] = (int4)0;
    for(int scalei = 0; scalei <loopcount; scalei++)
    {
        int4 scaleinfo1= info[scalei];
        int height = scaleinfo1.x & 0xffff;
        int grpnumperline =(scaleinfo1.y & 0xffff0000) >> 16;
        int totalgrp = scaleinfo1.y & 0xffff;
        int imgoff = scaleinfo1.z;
        float factor = as_float(scaleinfo1.w);

        __global const int * sum = sum1 + imgoff;
        __global const float * sqsum = sqsum1 + imgoff;
        for(int grploop=grpidx; grploop<totalgrp; grploop+=grpnumx)
        {
            int grpidy = grploop / grpnumperline;
            int grpidx = grploop - mul24(grpidy, grpnumperline);
            int x = mad24(grpidx,grpszx,lclidx);
            int y = mad24(grpidy,grpszy,lclidy);
            int grpoffx = x-lclidx;
            int grpoffy = y-lclidy;

            for(int i=0; i<read_loop; i++)
            {
                int pos_id = mad24(i,lcl_sz,lcl_id);
                pos_id = pos_id < total_read ? pos_id : 0;

                int lcl_y = pos_id / read_horiz_cnt;
                int lcl_x = pos_id - mul24(lcl_y, read_horiz_cnt);

                int glb_x = grpoffx + (lcl_x<<2);
                int glb_y = grpoffy + lcl_y;

                int glb_off = mad24(min(glb_y, height + WINDOWSIZE - 1),pixelstep,glb_x);
                int4 data = *(__global int4*)&sum[glb_off];
                int lcl_off = mad24(lcl_y, readwidth, lcl_x<<2);

                vstore4(data, 0, &lcldata[lcl_off]);
            }

            lcloutindex[lcl_id] = 0;
            lclcount[0] = 0;
            int result = 1;
            int nodecounter= startnode;
            float mean, variance_norm_factor;
            barrier(CLK_LOCAL_MEM_FENCE);

            int lcl_off = mad24(lclidy,readwidth,lclidx);
            int4 cascadeinfo1, cascadeinfo2;
            cascadeinfo1 = p;
            cascadeinfo2 = pq;

            cascadeinfo1.x +=lcl_off;
            cascadeinfo1.z +=lcl_off;
            mean = (lcldata[mad24(cascadeinfo1.y,readwidth,cascadeinfo1.x)] - lcldata[mad24(cascadeinfo1.y,readwidth,cascadeinfo1.z)] -
                    lcldata[mad24(cascadeinfo1.w,readwidth,cascadeinfo1.x)] + lcldata[mad24(cascadeinfo1.w,readwidth,cascadeinfo1.z)])
                    *correction;

            int p_offset = mad24(y, pixelstep, x);

            cascadeinfo2.x +=p_offset;
            cascadeinfo2.z +=p_offset;
            variance_norm_factor =sqsum[mad24(cascadeinfo2.y, pixelstep, cascadeinfo2.x)] - sqsum[mad24(cascadeinfo2.y, pixelstep, cascadeinfo2.z)] -
                                    sqsum[mad24(cascadeinfo2.w, pixelstep, cascadeinfo2.x)] + sqsum[mad24(cascadeinfo2.w, pixelstep, cascadeinfo2.z)];

            variance_norm_factor = variance_norm_factor * correction - mean * mean;
            variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1.f;

            for(int stageloop = start_stage; (stageloop < split_stage)  && result; stageloop++ )
            {
                float stage_sum = 0.f;
                int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
                float stagethreshold = as_float(stageinfo.y);
                for(int nodeloop = 0; nodeloop < stageinfo.x; )
                {
                    __global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter);

                    int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
                    int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
                    int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
                    float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
                    float3 alpha3 = *(__global float3*)(&(currentnodeptr->alpha[0]));

                    float nodethreshold  = w.w * variance_norm_factor;

                    info1.x +=lcl_off;
                    info1.z +=lcl_off;
                    info2.x +=lcl_off;
                    info2.z +=lcl_off;

                    float classsum = (lcldata[mad24(info1.y,readwidth,info1.x)] - lcldata[mad24(info1.y,readwidth,info1.z)] -
                                        lcldata[mad24(info1.w,readwidth,info1.x)] + lcldata[mad24(info1.w,readwidth,info1.z)]) * w.x;

                    classsum += (lcldata[mad24(info2.y,readwidth,info2.x)] - lcldata[mad24(info2.y,readwidth,info2.z)] -
                                    lcldata[mad24(info2.w,readwidth,info2.x)] + lcldata[mad24(info2.w,readwidth,info2.z)]) * w.y;

                    info3.x +=lcl_off;
                    info3.z +=lcl_off;
                    classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] -
                                    lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;

                    bool passThres = classsum >= nodethreshold;
#if STUMP_BASED
                    stage_sum += passThres ? alpha3.y : alpha3.x;
                    nodecounter++;
                    nodeloop++;
#else
                    bool isRootNode = (nodecounter & 1) == 0;
                    if(isRootNode)
                    {
                        if( (passThres && currentnodeptr->right) ||
                            (!passThres && currentnodeptr->left))
                        {
                            nodecounter ++;
                        }
                        else
                        {
                            stage_sum += alpha3.x;
                            nodecounter += 2;
                            nodeloop ++;
                        }
                    }
                    else
                    {
                        stage_sum += passThres ? alpha3.z : alpha3.y;
                        nodecounter ++;
                        nodeloop ++;
                    }
#endif
                }

                result = (stage_sum >= stagethreshold);
            }
            if(factor < 2)
            {
                if(result && lclidx %2 ==0 && lclidy %2 ==0 )
                {
                    int queueindex = atomic_inc(lclcount);
                    lcloutindex[queueindex<<1] = (lclidy << 16) | lclidx;
                    lcloutindex[(queueindex<<1)+1] = as_int((float)variance_norm_factor);
                }
            }
            else
            {
                if(result)
                {
                    int queueindex = atomic_inc(lclcount);
                    lcloutindex[queueindex<<1] = (lclidy << 16) | lclidx;
                    lcloutindex[(queueindex<<1)+1] = as_int((float)variance_norm_factor);
                }
            }
            barrier(CLK_LOCAL_MEM_FENCE);
            int queuecount  = lclcount[0];
            barrier(CLK_LOCAL_MEM_FENCE);
            nodecounter = splitnode;
            for(int stageloop = split_stage; stageloop< end_stage && queuecount>0; stageloop++)
            {
                lclcount[0]=0;
                barrier(CLK_LOCAL_MEM_FENCE);

                int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
                float stagethreshold = as_float(stageinfo.y);

                int perfscale = queuecount > 4 ? 3 : 2;
                int queuecount_loop = (queuecount + (1<<perfscale)-1) >> perfscale;
                int lcl_compute_win = lcl_sz >> perfscale;
                int lcl_compute_win_id = (lcl_id >>(6-perfscale));
                int lcl_loops = (stageinfo.x + lcl_compute_win -1) >> (6-perfscale);
                int lcl_compute_id = lcl_id - (lcl_compute_win_id << (6-perfscale));
                for(int queueloop=0; queueloop<queuecount_loop; queueloop++)
                {
                    float stage_sum = 0.f;
                    int temp_coord = lcloutindex[lcl_compute_win_id<<1];
                    float variance_norm_factor = as_float(lcloutindex[(lcl_compute_win_id<<1)+1]);
                    int queue_pixel = mad24(((temp_coord  & (int)0xffff0000)>>16),readwidth,temp_coord & 0xffff);

                    if(lcl_compute_win_id < queuecount)
                    {
                        int tempnodecounter = lcl_compute_id;
                        float part_sum = 0.f;
                        const int stump_factor = STUMP_BASED ? 1 : 2;
                        int root_offset = 0;
                        for(int lcl_loop=0; lcl_loop<lcl_loops && tempnodecounter<stageinfo.x;)
                        {
                            __global GpuHidHaarTreeNode* currentnodeptr =
                                nodeptr + (nodecounter + tempnodecounter) * stump_factor + root_offset;

                            int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
                            int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
                            int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
                            float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
                            float3 alpha3 = *(__global float3*)(&(currentnodeptr->alpha[0]));
                            float nodethreshold  = w.w * variance_norm_factor;

                            info1.x +=queue_pixel;
                            info1.z +=queue_pixel;
                            info2.x +=queue_pixel;
                            info2.z +=queue_pixel;

                            float classsum = (lcldata[mad24(info1.y,readwidth,info1.x)] - lcldata[mad24(info1.y,readwidth,info1.z)] -
                                                lcldata[mad24(info1.w,readwidth,info1.x)] + lcldata[mad24(info1.w,readwidth,info1.z)]) * w.x;


                            classsum += (lcldata[mad24(info2.y,readwidth,info2.x)] - lcldata[mad24(info2.y,readwidth,info2.z)] -
                                            lcldata[mad24(info2.w,readwidth,info2.x)] + lcldata[mad24(info2.w,readwidth,info2.z)]) * w.y;

                            info3.x +=queue_pixel;
                            info3.z +=queue_pixel;
                            classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] -
                                            lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;

                            bool passThres = classsum >= nodethreshold;
#if STUMP_BASED
                            part_sum += passThres ? alpha3.y : alpha3.x;
                            tempnodecounter += lcl_compute_win;
                            lcl_loop++;
#else
                            if(root_offset == 0)
                            {
                                if( (passThres && currentnodeptr->right) ||
                                    (!passThres && currentnodeptr->left))
                                {
                                    root_offset = 1;
                                }
                                else
                                {
                                    part_sum += alpha3.x;
                                    tempnodecounter += lcl_compute_win;
                                    lcl_loop++;
                                }
                            }
                            else
                            {
                                part_sum += passThres ? alpha3.z : alpha3.y;
                                tempnodecounter += lcl_compute_win;
                                lcl_loop++;
                                root_offset = 0;
                            }
#endif
                        }//end for(int lcl_loop=0;lcl_loop<lcl_loops;lcl_loop++)
                        partialsum[lcl_id]=part_sum;
                    }
                    barrier(CLK_LOCAL_MEM_FENCE);
                    if(lcl_compute_win_id < queuecount)
                    {
                        for(int i=0; i<lcl_compute_win && (lcl_compute_id==0); i++)
                        {
                            stage_sum += partialsum[lcl_id+i];
                        }
                        if(stage_sum >= stagethreshold && (lcl_compute_id==0))
                        {
                            int queueindex = atomic_inc(lclcount);
                            lcloutindex[queueindex<<1] = temp_coord;
                            lcloutindex[(queueindex<<1)+1] = as_int(variance_norm_factor);
                        }
                        lcl_compute_win_id +=(1<<perfscale);
                    }
                    barrier(CLK_LOCAL_MEM_FENCE);
                }//end for(int queueloop=0;queueloop<queuecount_loop;queueloop++)

                queuecount = lclcount[0];
                barrier(CLK_LOCAL_MEM_FENCE);
                nodecounter += stageinfo.x;
            }//end for(int stageloop = splitstage; stageloop< endstage && queuecount>0;stageloop++)

            if(lcl_id<queuecount)
            {
                int temp = lcloutindex[lcl_id<<1];
                int x = mad24(grpidx,grpszx,temp & 0xffff);
                int y = mad24(grpidy,grpszy,((temp & (int)0xffff0000) >> 16));
                temp = glboutindex[0];
                int4 candidate_result;
                candidate_result.zw = (int2)convert_int_rte(factor*20.f);
                candidate_result.x = convert_int_rte(x*factor);
                candidate_result.y = convert_int_rte(y*factor);
                atomic_inc(glboutindex);

                int i = outputoff+temp+lcl_id;
                if(candidate[i].z == 0)
                {
                    candidate[i] = candidate_result;
                }
                else
                {
                    for(i=i+1;;i++)
                    {
                        if(candidate[i].z == 0)
                        {
                            candidate[i] = candidate_result;
                            break;
                        }
                    }
                }
            }
            barrier(CLK_LOCAL_MEM_FENCE);
        }//end for(int grploop=grpidx;grploop<totalgrp;grploop+=grpnumx)
    }//end for(int scalei = 0; scalei <loopcount; scalei++)
}
#endif