/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::detail; using namespace cv::cuda; #ifdef HAVE_OPENCV_XFEATURES2D #include "opencv2/xfeatures2d.hpp" using xfeatures2d::SURF; #endif namespace { struct DistIdxPair { bool operator<(const DistIdxPair &other) const { return dist < other.dist; } double dist; int idx; }; struct MatchPairsBody : ParallelLoopBody { MatchPairsBody(FeaturesMatcher &_matcher, const std::vector<ImageFeatures> &_features, std::vector<MatchesInfo> &_pairwise_matches, std::vector<std::pair<int,int> > &_near_pairs) : matcher(_matcher), features(_features), pairwise_matches(_pairwise_matches), near_pairs(_near_pairs) {} void operator ()(const Range &r) const { const int num_images = static_cast<int>(features.size()); for (int i = r.start; i < r.end; ++i) { int from = near_pairs[i].first; int to = near_pairs[i].second; int pair_idx = from*num_images + to; matcher(features[from], features[to], pairwise_matches[pair_idx]); pairwise_matches[pair_idx].src_img_idx = from; pairwise_matches[pair_idx].dst_img_idx = to; size_t dual_pair_idx = to*num_images + from; pairwise_matches[dual_pair_idx] = pairwise_matches[pair_idx]; pairwise_matches[dual_pair_idx].src_img_idx = to; pairwise_matches[dual_pair_idx].dst_img_idx = from; if (!pairwise_matches[pair_idx].H.empty()) pairwise_matches[dual_pair_idx].H = pairwise_matches[pair_idx].H.inv(); for (size_t j = 0; j < pairwise_matches[dual_pair_idx].matches.size(); ++j) std::swap(pairwise_matches[dual_pair_idx].matches[j].queryIdx, pairwise_matches[dual_pair_idx].matches[j].trainIdx); LOG("."); } } FeaturesMatcher &matcher; const std::vector<ImageFeatures> &features; std::vector<MatchesInfo> &pairwise_matches; std::vector<std::pair<int,int> > &near_pairs; private: void operator =(const MatchPairsBody&); }; ////////////////////////////////////////////////////////////////////////////// typedef std::set<std::pair<int,int> > MatchesSet; // These two classes are aimed to find features matches only, not to // estimate homography class CpuMatcher : public FeaturesMatcher { public: CpuMatcher(float match_conf) : FeaturesMatcher(true), match_conf_(match_conf) {} void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info); private: float match_conf_; }; #ifdef HAVE_OPENCV_CUDAFEATURES2D class GpuMatcher : public FeaturesMatcher { public: GpuMatcher(float match_conf) : match_conf_(match_conf) {} void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info); void collectGarbage(); private: float match_conf_; GpuMat descriptors1_, descriptors2_; GpuMat train_idx_, distance_, all_dist_; std::vector< std::vector<DMatch> > pair_matches; }; #endif void CpuMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info) { CV_Assert(features1.descriptors.type() == features2.descriptors.type()); CV_Assert(features2.descriptors.depth() == CV_8U || features2.descriptors.depth() == CV_32F); #ifdef HAVE_TEGRA_OPTIMIZATION if (tegra::useTegra() && tegra::match2nearest(features1, features2, matches_info, match_conf_)) return; #endif matches_info.matches.clear(); Ptr<cv::DescriptorMatcher> matcher; #if 0 // TODO check this if (ocl::useOpenCL()) { matcher = makePtr<BFMatcher>((int)NORM_L2); } else #endif { Ptr<flann::IndexParams> indexParams = makePtr<flann::KDTreeIndexParams>(); Ptr<flann::SearchParams> searchParams = makePtr<flann::SearchParams>(); if (features2.descriptors.depth() == CV_8U) { indexParams->setAlgorithm(cvflann::FLANN_INDEX_LSH); searchParams->setAlgorithm(cvflann::FLANN_INDEX_LSH); } matcher = makePtr<FlannBasedMatcher>(indexParams, searchParams); } std::vector< std::vector<DMatch> > pair_matches; MatchesSet matches; // Find 1->2 matches matcher->knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2); for (size_t i = 0; i < pair_matches.size(); ++i) { if (pair_matches[i].size() < 2) continue; const DMatch& m0 = pair_matches[i][0]; const DMatch& m1 = pair_matches[i][1]; if (m0.distance < (1.f - match_conf_) * m1.distance) { matches_info.matches.push_back(m0); matches.insert(std::make_pair(m0.queryIdx, m0.trainIdx)); } } LOG("\n1->2 matches: " << matches_info.matches.size() << endl); // Find 2->1 matches pair_matches.clear(); matcher->knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2); for (size_t i = 0; i < pair_matches.size(); ++i) { if (pair_matches[i].size() < 2) continue; const DMatch& m0 = pair_matches[i][0]; const DMatch& m1 = pair_matches[i][1]; if (m0.distance < (1.f - match_conf_) * m1.distance) if (matches.find(std::make_pair(m0.trainIdx, m0.queryIdx)) == matches.end()) matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance)); } LOG("1->2 & 2->1 matches: " << matches_info.matches.size() << endl); } #ifdef HAVE_OPENCV_CUDAFEATURES2D void GpuMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info) { matches_info.matches.clear(); ensureSizeIsEnough(features1.descriptors.size(), features1.descriptors.type(), descriptors1_); ensureSizeIsEnough(features2.descriptors.size(), features2.descriptors.type(), descriptors2_); descriptors1_.upload(features1.descriptors); descriptors2_.upload(features2.descriptors); //TODO: NORM_L1 allows to avoid matcher crashes for ORB features, but is not absolutely correct for them. // The best choice for ORB features is NORM_HAMMING, but it is incorrect for SURF features. // More accurate fix in this place should be done in the future -- the type of the norm // should be either a parameter of this method, or a field of the class. Ptr<cuda::DescriptorMatcher> matcher = cuda::DescriptorMatcher::createBFMatcher(NORM_L1); MatchesSet matches; // Find 1->2 matches pair_matches.clear(); matcher->knnMatch(descriptors1_, descriptors2_, pair_matches, 2); for (size_t i = 0; i < pair_matches.size(); ++i) { if (pair_matches[i].size() < 2) continue; const DMatch& m0 = pair_matches[i][0]; const DMatch& m1 = pair_matches[i][1]; if (m0.distance < (1.f - match_conf_) * m1.distance) { matches_info.matches.push_back(m0); matches.insert(std::make_pair(m0.queryIdx, m0.trainIdx)); } } // Find 2->1 matches pair_matches.clear(); matcher->knnMatch(descriptors2_, descriptors1_, pair_matches, 2); for (size_t i = 0; i < pair_matches.size(); ++i) { if (pair_matches[i].size() < 2) continue; const DMatch& m0 = pair_matches[i][0]; const DMatch& m1 = pair_matches[i][1]; if (m0.distance < (1.f - match_conf_) * m1.distance) if (matches.find(std::make_pair(m0.trainIdx, m0.queryIdx)) == matches.end()) matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance)); } } void GpuMatcher::collectGarbage() { descriptors1_.release(); descriptors2_.release(); train_idx_.release(); distance_.release(); all_dist_.release(); std::vector< std::vector<DMatch> >().swap(pair_matches); } #endif } // namespace namespace cv { namespace detail { void FeaturesFinder::operator ()(InputArray image, ImageFeatures &features) { find(image, features); features.img_size = image.size(); } void FeaturesFinder::operator ()(InputArray image, ImageFeatures &features, const std::vector<Rect> &rois) { std::vector<ImageFeatures> roi_features(rois.size()); size_t total_kps_count = 0; int total_descriptors_height = 0; for (size_t i = 0; i < rois.size(); ++i) { find(image.getUMat()(rois[i]), roi_features[i]); total_kps_count += roi_features[i].keypoints.size(); total_descriptors_height += roi_features[i].descriptors.rows; } features.img_size = image.size(); features.keypoints.resize(total_kps_count); features.descriptors.create(total_descriptors_height, roi_features[0].descriptors.cols, roi_features[0].descriptors.type()); int kp_idx = 0; int descr_offset = 0; for (size_t i = 0; i < rois.size(); ++i) { for (size_t j = 0; j < roi_features[i].keypoints.size(); ++j, ++kp_idx) { features.keypoints[kp_idx] = roi_features[i].keypoints[j]; features.keypoints[kp_idx].pt.x += (float)rois[i].x; features.keypoints[kp_idx].pt.y += (float)rois[i].y; } UMat subdescr = features.descriptors.rowRange( descr_offset, descr_offset + roi_features[i].descriptors.rows); roi_features[i].descriptors.copyTo(subdescr); descr_offset += roi_features[i].descriptors.rows; } } SurfFeaturesFinder::SurfFeaturesFinder(double hess_thresh, int num_octaves, int num_layers, int num_octaves_descr, int num_layers_descr) { #ifdef HAVE_OPENCV_XFEATURES2D if (num_octaves_descr == num_octaves && num_layers_descr == num_layers) { Ptr<SURF> surf_ = SURF::create(); if( !surf_ ) CV_Error( Error::StsNotImplemented, "OpenCV was built without SURF support" ); surf_->setHessianThreshold(hess_thresh); surf_->setNOctaves(num_octaves); surf_->setNOctaveLayers(num_layers); surf = surf_; } else { Ptr<SURF> sdetector_ = SURF::create(); Ptr<SURF> sextractor_ = SURF::create(); if( !sdetector_ || !sextractor_ ) CV_Error( Error::StsNotImplemented, "OpenCV was built without SURF support" ); sdetector_->setHessianThreshold(hess_thresh); sdetector_->setNOctaves(num_octaves); sdetector_->setNOctaveLayers(num_layers); sextractor_->setNOctaves(num_octaves_descr); sextractor_->setNOctaveLayers(num_layers_descr); detector_ = sdetector_; extractor_ = sextractor_; } #else (void)hess_thresh; (void)num_octaves; (void)num_layers; (void)num_octaves_descr; (void)num_layers_descr; CV_Error( Error::StsNotImplemented, "OpenCV was built without SURF support" ); #endif } void SurfFeaturesFinder::find(InputArray image, ImageFeatures &features) { UMat gray_image; CV_Assert((image.type() == CV_8UC3) || (image.type() == CV_8UC1)); if(image.type() == CV_8UC3) { cvtColor(image, gray_image, COLOR_BGR2GRAY); } else { gray_image = image.getUMat(); } if (!surf) { detector_->detect(gray_image, features.keypoints); extractor_->compute(gray_image, features.keypoints, features.descriptors); } else { UMat descriptors; surf->detectAndCompute(gray_image, Mat(), features.keypoints, descriptors); features.descriptors = descriptors.reshape(1, (int)features.keypoints.size()); } } OrbFeaturesFinder::OrbFeaturesFinder(Size _grid_size, int n_features, float scaleFactor, int nlevels) { grid_size = _grid_size; orb = ORB::create(n_features * (99 + grid_size.area())/100/grid_size.area(), scaleFactor, nlevels); } void OrbFeaturesFinder::find(InputArray image, ImageFeatures &features) { UMat gray_image; CV_Assert((image.type() == CV_8UC3) || (image.type() == CV_8UC4) || (image.type() == CV_8UC1)); if (image.type() == CV_8UC3) { cvtColor(image, gray_image, COLOR_BGR2GRAY); } else if (image.type() == CV_8UC4) { cvtColor(image, gray_image, COLOR_BGRA2GRAY); } else if (image.type() == CV_8UC1) { gray_image = image.getUMat(); } else { CV_Error(Error::StsUnsupportedFormat, ""); } if (grid_size.area() == 1) orb->detectAndCompute(gray_image, Mat(), features.keypoints, features.descriptors); else { features.keypoints.clear(); features.descriptors.release(); std::vector<KeyPoint> points; Mat _descriptors; UMat descriptors; for (int r = 0; r < grid_size.height; ++r) for (int c = 0; c < grid_size.width; ++c) { int xl = c * gray_image.cols / grid_size.width; int yl = r * gray_image.rows / grid_size.height; int xr = (c+1) * gray_image.cols / grid_size.width; int yr = (r+1) * gray_image.rows / grid_size.height; // LOGLN("OrbFeaturesFinder::find: gray_image.empty=" << (gray_image.empty()?"true":"false") << ", " // << " gray_image.size()=(" << gray_image.size().width << "x" << gray_image.size().height << "), " // << " yl=" << yl << ", yr=" << yr << ", " // << " xl=" << xl << ", xr=" << xr << ", gray_image.data=" << ((size_t)gray_image.data) << ", " // << "gray_image.dims=" << gray_image.dims << "\n"); UMat gray_image_part=gray_image(Range(yl, yr), Range(xl, xr)); // LOGLN("OrbFeaturesFinder::find: gray_image_part.empty=" << (gray_image_part.empty()?"true":"false") << ", " // << " gray_image_part.size()=(" << gray_image_part.size().width << "x" << gray_image_part.size().height << "), " // << " gray_image_part.dims=" << gray_image_part.dims << ", " // << " gray_image_part.data=" << ((size_t)gray_image_part.data) << "\n"); orb->detectAndCompute(gray_image_part, UMat(), points, descriptors); features.keypoints.reserve(features.keypoints.size() + points.size()); for (std::vector<KeyPoint>::iterator kp = points.begin(); kp != points.end(); ++kp) { kp->pt.x += xl; kp->pt.y += yl; features.keypoints.push_back(*kp); } _descriptors.push_back(descriptors.getMat(ACCESS_READ)); } // TODO optimize copyTo() //features.descriptors = _descriptors.getUMat(ACCESS_READ); _descriptors.copyTo(features.descriptors); } } #ifdef HAVE_OPENCV_XFEATURES2D SurfFeaturesFinderGpu::SurfFeaturesFinderGpu(double hess_thresh, int num_octaves, int num_layers, int num_octaves_descr, int num_layers_descr) { surf_.keypointsRatio = 0.1f; surf_.hessianThreshold = hess_thresh; surf_.extended = false; num_octaves_ = num_octaves; num_layers_ = num_layers; num_octaves_descr_ = num_octaves_descr; num_layers_descr_ = num_layers_descr; } void SurfFeaturesFinderGpu::find(InputArray image, ImageFeatures &features) { CV_Assert(image.depth() == CV_8U); ensureSizeIsEnough(image.size(), image.type(), image_); image_.upload(image); ensureSizeIsEnough(image.size(), CV_8UC1, gray_image_); cvtColor(image_, gray_image_, COLOR_BGR2GRAY); surf_.nOctaves = num_octaves_; surf_.nOctaveLayers = num_layers_; surf_.upright = false; surf_(gray_image_, GpuMat(), keypoints_); surf_.nOctaves = num_octaves_descr_; surf_.nOctaveLayers = num_layers_descr_; surf_.upright = true; surf_(gray_image_, GpuMat(), keypoints_, descriptors_, true); surf_.downloadKeypoints(keypoints_, features.keypoints); descriptors_.download(features.descriptors); } void SurfFeaturesFinderGpu::collectGarbage() { surf_.releaseMemory(); image_.release(); gray_image_.release(); keypoints_.release(); descriptors_.release(); } #endif ////////////////////////////////////////////////////////////////////////////// MatchesInfo::MatchesInfo() : src_img_idx(-1), dst_img_idx(-1), num_inliers(0), confidence(0) {} MatchesInfo::MatchesInfo(const MatchesInfo &other) { *this = other; } const MatchesInfo& MatchesInfo::operator =(const MatchesInfo &other) { src_img_idx = other.src_img_idx; dst_img_idx = other.dst_img_idx; matches = other.matches; inliers_mask = other.inliers_mask; num_inliers = other.num_inliers; H = other.H.clone(); confidence = other.confidence; return *this; } ////////////////////////////////////////////////////////////////////////////// void FeaturesMatcher::operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches, const UMat &mask) { const int num_images = static_cast<int>(features.size()); CV_Assert(mask.empty() || (mask.type() == CV_8U && mask.cols == num_images && mask.rows)); Mat_<uchar> mask_(mask.getMat(ACCESS_READ)); if (mask_.empty()) mask_ = Mat::ones(num_images, num_images, CV_8U); std::vector<std::pair<int,int> > near_pairs; for (int i = 0; i < num_images - 1; ++i) for (int j = i + 1; j < num_images; ++j) if (features[i].keypoints.size() > 0 && features[j].keypoints.size() > 0 && mask_(i, j)) near_pairs.push_back(std::make_pair(i, j)); pairwise_matches.resize(num_images * num_images); MatchPairsBody body(*this, features, pairwise_matches, near_pairs); if (is_thread_safe_) parallel_for_(Range(0, static_cast<int>(near_pairs.size())), body); else body(Range(0, static_cast<int>(near_pairs.size()))); LOGLN_CHAT(""); } ////////////////////////////////////////////////////////////////////////////// BestOf2NearestMatcher::BestOf2NearestMatcher(bool try_use_gpu, float match_conf, int num_matches_thresh1, int num_matches_thresh2) { (void)try_use_gpu; #ifdef HAVE_OPENCV_CUDAFEATURES2D if (try_use_gpu && getCudaEnabledDeviceCount() > 0) { impl_ = makePtr<GpuMatcher>(match_conf); } else #endif { impl_ = makePtr<CpuMatcher>(match_conf); } is_thread_safe_ = impl_->isThreadSafe(); num_matches_thresh1_ = num_matches_thresh1; num_matches_thresh2_ = num_matches_thresh2; } void BestOf2NearestMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo &matches_info) { (*impl_)(features1, features2, matches_info); // Check if it makes sense to find homography if (matches_info.matches.size() < static_cast<size_t>(num_matches_thresh1_)) return; // Construct point-point correspondences for homography estimation Mat src_points(1, static_cast<int>(matches_info.matches.size()), CV_32FC2); Mat dst_points(1, static_cast<int>(matches_info.matches.size()), CV_32FC2); for (size_t i = 0; i < matches_info.matches.size(); ++i) { const DMatch& m = matches_info.matches[i]; Point2f p = features1.keypoints[m.queryIdx].pt; p.x -= features1.img_size.width * 0.5f; p.y -= features1.img_size.height * 0.5f; src_points.at<Point2f>(0, static_cast<int>(i)) = p; p = features2.keypoints[m.trainIdx].pt; p.x -= features2.img_size.width * 0.5f; p.y -= features2.img_size.height * 0.5f; dst_points.at<Point2f>(0, static_cast<int>(i)) = p; } // Find pair-wise motion matches_info.H = findHomography(src_points, dst_points, matches_info.inliers_mask, RANSAC); if (matches_info.H.empty() || std::abs(determinant(matches_info.H)) < std::numeric_limits<double>::epsilon()) return; // Find number of inliers matches_info.num_inliers = 0; for (size_t i = 0; i < matches_info.inliers_mask.size(); ++i) if (matches_info.inliers_mask[i]) matches_info.num_inliers++; // These coeffs are from paper M. Brown and D. Lowe. "Automatic Panoramic Image Stitching // using Invariant Features" matches_info.confidence = matches_info.num_inliers / (8 + 0.3 * matches_info.matches.size()); // Set zero confidence to remove matches between too close images, as they don't provide // additional information anyway. The threshold was set experimentally. matches_info.confidence = matches_info.confidence > 3. ? 0. : matches_info.confidence; // Check if we should try to refine motion if (matches_info.num_inliers < num_matches_thresh2_) return; // Construct point-point correspondences for inliers only src_points.create(1, matches_info.num_inliers, CV_32FC2); dst_points.create(1, matches_info.num_inliers, CV_32FC2); int inlier_idx = 0; for (size_t i = 0; i < matches_info.matches.size(); ++i) { if (!matches_info.inliers_mask[i]) continue; const DMatch& m = matches_info.matches[i]; Point2f p = features1.keypoints[m.queryIdx].pt; p.x -= features1.img_size.width * 0.5f; p.y -= features1.img_size.height * 0.5f; src_points.at<Point2f>(0, inlier_idx) = p; p = features2.keypoints[m.trainIdx].pt; p.x -= features2.img_size.width * 0.5f; p.y -= features2.img_size.height * 0.5f; dst_points.at<Point2f>(0, inlier_idx) = p; inlier_idx++; } // Rerun motion estimation on inliers only matches_info.H = findHomography(src_points, dst_points, RANSAC); } void BestOf2NearestMatcher::collectGarbage() { impl_->collectGarbage(); } BestOf2NearestRangeMatcher::BestOf2NearestRangeMatcher(int range_width, bool try_use_gpu, float match_conf, int num_matches_thresh1, int num_matches_thresh2): BestOf2NearestMatcher(try_use_gpu, match_conf, num_matches_thresh1, num_matches_thresh2) { range_width_ = range_width; } void BestOf2NearestRangeMatcher::operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches, const UMat &mask) { const int num_images = static_cast<int>(features.size()); CV_Assert(mask.empty() || (mask.type() == CV_8U && mask.cols == num_images && mask.rows)); Mat_<uchar> mask_(mask.getMat(ACCESS_READ)); if (mask_.empty()) mask_ = Mat::ones(num_images, num_images, CV_8U); std::vector<std::pair<int,int> > near_pairs; for (int i = 0; i < num_images - 1; ++i) for (int j = i + 1; j < std::min(num_images, i + range_width_); ++j) if (features[i].keypoints.size() > 0 && features[j].keypoints.size() > 0 && mask_(i, j)) near_pairs.push_back(std::make_pair(i, j)); pairwise_matches.resize(num_images * num_images); MatchPairsBody body(*this, features, pairwise_matches, near_pairs); if (is_thread_safe_) parallel_for_(Range(0, static_cast<int>(near_pairs.size())), body); else body(Range(0, static_cast<int>(near_pairs.size()))); LOGLN_CHAT(""); } } // namespace detail } // namespace cv