/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace std;

namespace cv {
namespace detail {

void ProjectorBase::setCameraParams(const Mat &K, const Mat &R, const Mat &T)
{
    CV_Assert(K.size() == Size(3, 3) && K.type() == CV_32F);
    CV_Assert(R.size() == Size(3, 3) && R.type() == CV_32F);
    CV_Assert((T.size() == Size(1, 3) || T.size() == Size(3, 1)) && T.type() == CV_32F);

    Mat_<float> K_(K);
    k[0] = K_(0,0); k[1] = K_(0,1); k[2] = K_(0,2);
    k[3] = K_(1,0); k[4] = K_(1,1); k[5] = K_(1,2);
    k[6] = K_(2,0); k[7] = K_(2,1); k[8] = K_(2,2);

    Mat_<float> Rinv = R.t();
    rinv[0] = Rinv(0,0); rinv[1] = Rinv(0,1); rinv[2] = Rinv(0,2);
    rinv[3] = Rinv(1,0); rinv[4] = Rinv(1,1); rinv[5] = Rinv(1,2);
    rinv[6] = Rinv(2,0); rinv[7] = Rinv(2,1); rinv[8] = Rinv(2,2);

    Mat_<float> R_Kinv = R * K.inv();
    r_kinv[0] = R_Kinv(0,0); r_kinv[1] = R_Kinv(0,1); r_kinv[2] = R_Kinv(0,2);
    r_kinv[3] = R_Kinv(1,0); r_kinv[4] = R_Kinv(1,1); r_kinv[5] = R_Kinv(1,2);
    r_kinv[6] = R_Kinv(2,0); r_kinv[7] = R_Kinv(2,1); r_kinv[8] = R_Kinv(2,2);

    Mat_<float> K_Rinv = K * Rinv;
    k_rinv[0] = K_Rinv(0,0); k_rinv[1] = K_Rinv(0,1); k_rinv[2] = K_Rinv(0,2);
    k_rinv[3] = K_Rinv(1,0); k_rinv[4] = K_Rinv(1,1); k_rinv[5] = K_Rinv(1,2);
    k_rinv[6] = K_Rinv(2,0); k_rinv[7] = K_Rinv(2,1); k_rinv[8] = K_Rinv(2,2);

    Mat_<float> T_(T.reshape(0, 3));
    t[0] = T_(0,0); t[1] = T_(1,0); t[2] = T_(2,0);
}


Point2f PlaneWarper::warpPoint(const Point2f &pt, const Mat &K, const Mat &R, const Mat &T)
{
    projector_.setCameraParams(K, R, T);
    Point2f uv;
    projector_.mapForward(pt.x, pt.y, uv.x, uv.y);
    return uv;
}


Rect PlaneWarper::buildMaps(Size src_size, const Mat &K, const Mat &R, const Mat &T, Mat &xmap, Mat &ymap)
{
    projector_.setCameraParams(K, R, T);

    Point dst_tl, dst_br;
    detectResultRoi(src_size, dst_tl, dst_br);

    xmap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);
    ymap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);

    float x, y;
    for (int v = dst_tl.y; v <= dst_br.y; ++v)
    {
        for (int u = dst_tl.x; u <= dst_br.x; ++u)
        {
            projector_.mapBackward(static_cast<float>(u), static_cast<float>(v), x, y);
            xmap.at<float>(v - dst_tl.y, u - dst_tl.x) = x;
            ymap.at<float>(v - dst_tl.y, u - dst_tl.x) = y;
        }
    }

    return Rect(dst_tl, dst_br);
}


Point PlaneWarper::warp(const Mat &src, const Mat &K, const Mat &R, const Mat &T, int interp_mode, int border_mode,
                        Mat &dst)
{
    Mat xmap, ymap;
    Rect dst_roi = buildMaps(src.size(), K, R, T, xmap, ymap);

    dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type());
    remap(src, dst, xmap, ymap, interp_mode, border_mode);

    return dst_roi.tl();
}


Rect PlaneWarper::warpRoi(Size src_size, const Mat &K, const Mat &R, const Mat &T)
{
    projector_.setCameraParams(K, R, T);

    Point dst_tl, dst_br;
    detectResultRoi(src_size, dst_tl, dst_br);

    return Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1));
}


void PlaneWarper::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br)
{
    float tl_uf = numeric_limits<float>::max();
    float tl_vf = numeric_limits<float>::max();
    float br_uf = -numeric_limits<float>::max();
    float br_vf = -numeric_limits<float>::max();

    float u, v;

    projector_.mapForward(0, 0, u, v);
    tl_uf = min(tl_uf, u); tl_vf = min(tl_vf, v);
    br_uf = max(br_uf, u); br_vf = max(br_vf, v);

    projector_.mapForward(0, static_cast<float>(src_size.height - 1), u, v);
    tl_uf = min(tl_uf, u); tl_vf = min(tl_vf, v);
    br_uf = max(br_uf, u); br_vf = max(br_vf, v);

    projector_.mapForward(static_cast<float>(src_size.width - 1), 0, u, v);
    tl_uf = min(tl_uf, u); tl_vf = min(tl_vf, v);
    br_uf = max(br_uf, u); br_vf = max(br_vf, v);

    projector_.mapForward(static_cast<float>(src_size.width - 1), static_cast<float>(src_size.height - 1), u, v);
    tl_uf = min(tl_uf, u); tl_vf = min(tl_vf, v);
    br_uf = max(br_uf, u); br_vf = max(br_vf, v);

    dst_tl.x = static_cast<int>(tl_uf);
    dst_tl.y = static_cast<int>(tl_vf);
    dst_br.x = static_cast<int>(br_uf);
    dst_br.y = static_cast<int>(br_vf);
}


void SphericalWarper::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br)
{
    detectResultRoiByBorder(src_size, dst_tl, dst_br);

    float tl_uf = static_cast<float>(dst_tl.x);
    float tl_vf = static_cast<float>(dst_tl.y);
    float br_uf = static_cast<float>(dst_br.x);
    float br_vf = static_cast<float>(dst_br.y);

    float x = projector_.rinv[1];
    float y = projector_.rinv[4];
    float z = projector_.rinv[7];
    if (y > 0.f)
    {
        float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2];
        float y_ = projector_.k[4] * y / z + projector_.k[5];
        if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height)
        {
            tl_uf = min(tl_uf, 0.f); tl_vf = min(tl_vf, static_cast<float>(CV_PI * projector_.scale));
            br_uf = max(br_uf, 0.f); br_vf = max(br_vf, static_cast<float>(CV_PI * projector_.scale));
        }
    }

    x = projector_.rinv[1];
    y = -projector_.rinv[4];
    z = projector_.rinv[7];
    if (y > 0.f)
    {
        float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2];
        float y_ = projector_.k[4] * y / z + projector_.k[5];
        if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height)
        {
            tl_uf = min(tl_uf, 0.f); tl_vf = min(tl_vf, static_cast<float>(0));
            br_uf = max(br_uf, 0.f); br_vf = max(br_vf, static_cast<float>(0));
        }
    }

    dst_tl.x = static_cast<int>(tl_uf);
    dst_tl.y = static_cast<int>(tl_vf);
    dst_br.x = static_cast<int>(br_uf);
    dst_br.y = static_cast<int>(br_vf);
}


#if defined(HAVE_OPENCV_GPU) && !defined(DYNAMIC_CUDA_SUPPORT)
Rect PlaneWarperGpu::buildMaps(Size src_size, const Mat &K, const Mat &R, gpu::GpuMat &xmap, gpu::GpuMat &ymap)
{
    return buildMaps(src_size, K, R, Mat::zeros(3, 1, CV_32F), xmap, ymap);
}

Rect PlaneWarperGpu::buildMaps(Size src_size, const Mat &K, const Mat &R, const Mat &T, gpu::GpuMat &xmap, gpu::GpuMat &ymap)
{
    projector_.setCameraParams(K, R, T);

    Point dst_tl, dst_br;
    detectResultRoi(src_size, dst_tl, dst_br);

    gpu::buildWarpPlaneMaps(src_size, Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)),
                            K, R, T, projector_.scale, xmap, ymap);

    return Rect(dst_tl, dst_br);
}

Point PlaneWarperGpu::warp(const gpu::GpuMat &src, const Mat &K, const Mat &R, int interp_mode, int border_mode,
                           gpu::GpuMat &dst)
{
    return warp(src, K, R, Mat::zeros(3, 1, CV_32F), interp_mode, border_mode, dst);
}


Point PlaneWarperGpu::warp(const gpu::GpuMat &src, const Mat &K, const Mat &R, const Mat &T, int interp_mode, int border_mode,
                           gpu::GpuMat &dst)
{
    Rect dst_roi = buildMaps(src.size(), K, R, T, d_xmap_, d_ymap_);
    dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type());
    gpu::remap(src, dst, d_xmap_, d_ymap_, interp_mode, border_mode);
    return dst_roi.tl();
}


Rect SphericalWarperGpu::buildMaps(Size src_size, const Mat &K, const Mat &R, gpu::GpuMat &xmap, gpu::GpuMat &ymap)
{
    projector_.setCameraParams(K, R);

    Point dst_tl, dst_br;
    detectResultRoi(src_size, dst_tl, dst_br);

    gpu::buildWarpSphericalMaps(src_size, Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)),
                                K, R, projector_.scale, xmap, ymap);

    return Rect(dst_tl, dst_br);
}


Point SphericalWarperGpu::warp(const gpu::GpuMat &src, const Mat &K, const Mat &R, int interp_mode, int border_mode,
                               gpu::GpuMat &dst)
{
    Rect dst_roi = buildMaps(src.size(), K, R, d_xmap_, d_ymap_);
    dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type());
    gpu::remap(src, dst, d_xmap_, d_ymap_, interp_mode, border_mode);
    return dst_roi.tl();
}


Rect CylindricalWarperGpu::buildMaps(Size src_size, const Mat &K, const Mat &R, gpu::GpuMat &xmap, gpu::GpuMat &ymap)
{
    projector_.setCameraParams(K, R);

    Point dst_tl, dst_br;
    detectResultRoi(src_size, dst_tl, dst_br);

    gpu::buildWarpCylindricalMaps(src_size, Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)),
                                  K, R, projector_.scale, xmap, ymap);

    return Rect(dst_tl, dst_br);
}


Point CylindricalWarperGpu::warp(const gpu::GpuMat &src, const Mat &K, const Mat &R, int interp_mode, int border_mode,
                                 gpu::GpuMat &dst)
{
    Rect dst_roi = buildMaps(src.size(), K, R, d_xmap_, d_ymap_);
    dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type());
    gpu::remap(src, dst, d_xmap_, d_ymap_, interp_mode, border_mode);
    return dst_roi.tl();
}
#else
Rect PlaneWarperGpu::buildMaps(Size src_size, const Mat &K, const Mat &R, gpu::GpuMat &xmap, gpu::GpuMat &ymap)
{
    return buildMaps(src_size, K, R, Mat::zeros(3, 1, CV_32F), xmap, ymap);
}

Rect PlaneWarperGpu::buildMaps(Size src_size, const Mat &K, const Mat &R, const Mat &T, gpu::GpuMat &xmap, gpu::GpuMat &ymap)
{
    (void)src_size;
    (void)K;
    (void)R;
    (void)T;
    (void)xmap;
    (void)ymap;
    CV_Error(CV_StsNotImplemented, "CUDA optimization is unavailable");
    return Rect();
}

Point PlaneWarperGpu::warp(const gpu::GpuMat &src, const Mat &K, const Mat &R, int interp_mode, int border_mode,
                           gpu::GpuMat &dst)
{
    return warp(src, K, R, Mat::zeros(3, 1, CV_32F), interp_mode, border_mode, dst);
}


Point PlaneWarperGpu::warp(const gpu::GpuMat &src, const Mat &K, const Mat &R, const Mat &T, int interp_mode, int border_mode,
                           gpu::GpuMat &dst)
{
    (void)src;
    (void)K;
    (void)R;
    (void)T;
    (void)interp_mode;
    (void)border_mode;
    (void)dst;
    CV_Error(CV_StsNotImplemented, "CUDA optimization is unavailable");
    return Point();
}


Rect SphericalWarperGpu::buildMaps(Size src_size, const Mat &K, const Mat &R, gpu::GpuMat &xmap, gpu::GpuMat &ymap)
{
    (void)src_size;
    (void)K;
    (void)R;
    (void)xmap;
    (void)ymap;
    CV_Error(CV_StsNotImplemented, "CUDA optimization is unavailable");
    return Rect();
}


Point SphericalWarperGpu::warp(const gpu::GpuMat &src, const Mat &K, const Mat &R, int interp_mode, int border_mode,
                               gpu::GpuMat &dst)
{
    (void)src;
    (void)K;
    (void)R;
    (void)interp_mode;
    (void)border_mode;
    (void)dst;
    CV_Error(CV_StsNotImplemented, "CUDA optimization is unavailable");
    return Point();
}


Rect CylindricalWarperGpu::buildMaps(Size src_size, const Mat &K, const Mat &R, gpu::GpuMat &xmap, gpu::GpuMat &ymap)
{
    (void)src_size;
    (void)K;
    (void)R;
    (void)xmap;
    (void)ymap;
    CV_Error(CV_StsNotImplemented, "CUDA optimization is unavailable");
    return Rect();
}


Point CylindricalWarperGpu::warp(const gpu::GpuMat &src, const Mat &K, const Mat &R, int interp_mode, int border_mode,
                                 gpu::GpuMat &dst)
{
    (void)src;
    (void)K;
    (void)R;
    (void)interp_mode;
    (void)border_mode;
    (void)dst;
    CV_Error(CV_StsNotImplemented, "CUDA optimization is unavailable");
    return Point();
}
#endif

void SphericalPortraitWarper::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br)
{
    detectResultRoiByBorder(src_size, dst_tl, dst_br);

    float tl_uf = static_cast<float>(dst_tl.x);
    float tl_vf = static_cast<float>(dst_tl.y);
    float br_uf = static_cast<float>(dst_br.x);
    float br_vf = static_cast<float>(dst_br.y);

    float x = projector_.rinv[0];
    float y = projector_.rinv[3];
    float z = projector_.rinv[6];
    if (y > 0.f)
    {
        float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2];
        float y_ = projector_.k[4] * y / z + projector_.k[5];
        if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height)
        {
            tl_uf = min(tl_uf, 0.f); tl_vf = min(tl_vf, static_cast<float>(CV_PI * projector_.scale));
            br_uf = max(br_uf, 0.f); br_vf = max(br_vf, static_cast<float>(CV_PI * projector_.scale));
        }
    }

    x = projector_.rinv[0];
    y = -projector_.rinv[3];
    z = projector_.rinv[6];
    if (y > 0.f)
    {
        float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2];
        float y_ = projector_.k[4] * y / z + projector_.k[5];
        if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height)
        {
            tl_uf = min(tl_uf, 0.f); tl_vf = min(tl_vf, static_cast<float>(0));
            br_uf = max(br_uf, 0.f); br_vf = max(br_vf, static_cast<float>(0));
        }
    }

    dst_tl.x = static_cast<int>(tl_uf);
    dst_tl.y = static_cast<int>(tl_vf);
    dst_br.x = static_cast<int>(br_uf);
    dst_br.y = static_cast<int>(br_vf);
}

} // namespace detail
} // namespace cv