retina.cpp 26.2 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
/*#******************************************************************************
 ** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 **
 ** By downloading, copying, installing or using the software you agree to this license.
 ** If you do not agree to this license, do not download, install,
 ** copy or use the software.
 **
 **
 ** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
 ** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping.
 **
 ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
 **
 **  Creation - enhancement process 2007-2011
 **      Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
 **
 ** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
 ** Refer to the following research paper for more information:
 ** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
 ** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
 ** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
 **
 ** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
 ** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
 ** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
 ** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
 ** ====> more informations in the above cited Jeanny Heraults's book.
 **
 **                          License Agreement
 **               For Open Source Computer Vision Library
 **
 ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
 **
 **               For Human Visual System tools (hvstools)
 ** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
 **
 ** Third party copyrights are property of their respective owners.
 **
 ** Redistribution and use in source and binary forms, with or without modification,
 ** are permitted provided that the following conditions are met:
 **
 ** * Redistributions of source code must retain the above copyright notice,
 **    this list of conditions and the following disclaimer.
 **
 ** * Redistributions in binary form must reproduce the above copyright notice,
 **    this list of conditions and the following disclaimer in the documentation
 **    and/or other materials provided with the distribution.
 **
 ** * The name of the copyright holders may not be used to endorse or promote products
 **    derived from this software without specific prior written permission.
 **
 ** This software is provided by the copyright holders and contributors "as is" and
 ** any express or implied warranties, including, but not limited to, the implied
 ** warranties of merchantability and fitness for a particular purpose are disclaimed.
 ** In no event shall the Intel Corporation or contributors be liable for any direct,
 ** indirect, incidental, special, exemplary, or consequential damages
 ** (including, but not limited to, procurement of substitute goods or services;
 ** loss of use, data, or profits; or business interruption) however caused
 ** and on any theory of liability, whether in contract, strict liability,
 ** or tort (including negligence or otherwise) arising in any way out of
 ** the use of this software, even if advised of the possibility of such damage.
 *******************************************************************************/

/*
 * Retina.cpp
 *
 *  Created on: Jul 19, 2011
 *      Author: Alexandre Benoit
 */
#include "precomp.hpp"
#include "retinafilter.hpp"
#include <iostream>

namespace cv
{

Retina::Retina(const cv::Size inputSz)
{
    _retinaFilter = 0;
    _init(inputSz, true, RETINA_COLOR_BAYER, false);
}

Retina::Retina(const cv::Size inputSz, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght)
{
    _retinaFilter = 0;
    _init(inputSz, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);
}

Retina::~Retina()
{
    if (_retinaFilter)
        delete _retinaFilter;
}

/**
* retreive retina input buffer size
*/
Size Retina::inputSize(){return cv::Size(_retinaFilter->getInputNBcolumns(), _retinaFilter->getInputNBrows());}

/**
* retreive retina output buffer size
*/
Size Retina::outputSize(){return cv::Size(_retinaFilter->getOutputNBcolumns(), _retinaFilter->getOutputNBrows());}


void Retina::setColorSaturation(const bool saturateColors, const float colorSaturationValue)
{
    _retinaFilter->setColorSaturation(saturateColors, colorSaturationValue);
}

struct Retina::RetinaParameters Retina::getParameters(){return _retinaParameters;}


void Retina::setup(std::string retinaParameterFile, const bool applyDefaultSetupOnFailure)
{
    try
    {
        // opening retinaParameterFile in read mode
        cv::FileStorage fs(retinaParameterFile, cv::FileStorage::READ);
        setup(fs, applyDefaultSetupOnFailure);
    }catch(Exception &e)
    {
    std::cout<<"Retina::setup: wrong/unappropriate xml parameter file : error report :`n=>"<<e.what()<<std::endl;
    if (applyDefaultSetupOnFailure)
    {
            std::cout<<"Retina::setup: resetting retina with default parameters"<<std::endl;
        setupOPLandIPLParvoChannel();
        setupIPLMagnoChannel();
    }
        else
        {
        std::cout<<"=> keeping current parameters"<<std::endl;
        }
    }
}

void Retina::setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure)
{
    try
    {
        // read parameters file if it exists or apply default setup if asked for
        if (!fs.isOpened())
        {
            std::cout<<"Retina::setup: provided parameters file could not be open... skeeping configuration"<<std::endl;
            return;
            // implicit else case : retinaParameterFile could be open (it exists at least)
        }
                // OPL and Parvo init first... update at the same time the parameters structure and the retina core
        cv::FileNode rootFn = fs.root(), currFn=rootFn["OPLandIPLparvo"];
        currFn["colorMode"]>>_retinaParameters.OPLandIplParvo.colorMode;
        currFn["normaliseOutput"]>>_retinaParameters.OPLandIplParvo.normaliseOutput;
        currFn["photoreceptorsLocalAdaptationSensitivity"]>>_retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity;
        currFn["photoreceptorsTemporalConstant"]>>_retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant;
        currFn["photoreceptorsSpatialConstant"]>>_retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant;
        currFn["horizontalCellsGain"]>>_retinaParameters.OPLandIplParvo.horizontalCellsGain;
        currFn["hcellsTemporalConstant"]>>_retinaParameters.OPLandIplParvo.hcellsTemporalConstant;
        currFn["hcellsSpatialConstant"]>>_retinaParameters.OPLandIplParvo.hcellsSpatialConstant;
        currFn["ganglionCellsSensitivity"]>>_retinaParameters.OPLandIplParvo.ganglionCellsSensitivity;
        setupOPLandIPLParvoChannel(_retinaParameters.OPLandIplParvo.colorMode, _retinaParameters.OPLandIplParvo.normaliseOutput, _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity, _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant, _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant, _retinaParameters.OPLandIplParvo.horizontalCellsGain, _retinaParameters.OPLandIplParvo.hcellsTemporalConstant, _retinaParameters.OPLandIplParvo.hcellsSpatialConstant, _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity);

        // init retina IPL magno setup... update at the same time the parameters structure and the retina core
        currFn=rootFn["IPLmagno"];
        currFn["normaliseOutput"]>>_retinaParameters.IplMagno.normaliseOutput;
        currFn["parasolCells_beta"]>>_retinaParameters.IplMagno.parasolCells_beta;
        currFn["parasolCells_tau"]>>_retinaParameters.IplMagno.parasolCells_tau;
        currFn["parasolCells_k"]>>_retinaParameters.IplMagno.parasolCells_k;
        currFn["amacrinCellsTemporalCutFrequency"]>>_retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency;
        currFn["V0CompressionParameter"]>>_retinaParameters.IplMagno.V0CompressionParameter;
        currFn["localAdaptintegration_tau"]>>_retinaParameters.IplMagno.localAdaptintegration_tau;
        currFn["localAdaptintegration_k"]>>_retinaParameters.IplMagno.localAdaptintegration_k;

        setupIPLMagnoChannel(_retinaParameters.IplMagno.normaliseOutput, _retinaParameters.IplMagno.parasolCells_beta, _retinaParameters.IplMagno.parasolCells_tau, _retinaParameters.IplMagno.parasolCells_k, _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency,_retinaParameters.IplMagno.V0CompressionParameter, _retinaParameters.IplMagno.localAdaptintegration_tau, _retinaParameters.IplMagno.localAdaptintegration_k);

    }catch(Exception &e)
    {
        std::cout<<"Retina::setup: resetting retina with default parameters"<<std::endl;
        if (applyDefaultSetupOnFailure)
        {
            setupOPLandIPLParvoChannel();
            setupIPLMagnoChannel();
        }
        std::cout<<"Retina::setup: wrong/unappropriate xml parameter file : error report :`n=>"<<e.what()<<std::endl;
        std::cout<<"=> keeping current parameters"<<std::endl;
    }

    // report current configuration
    std::cout<<printSetup()<<std::endl;
}

void Retina::setup(cv::Retina::RetinaParameters newConfiguration)
{
    // simply copy structures
    memcpy(&_retinaParameters, &newConfiguration, sizeof(cv::Retina::RetinaParameters));
    // apply setup
    setupOPLandIPLParvoChannel(_retinaParameters.OPLandIplParvo.colorMode, _retinaParameters.OPLandIplParvo.normaliseOutput, _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity, _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant, _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant, _retinaParameters.OPLandIplParvo.horizontalCellsGain, _retinaParameters.OPLandIplParvo.hcellsTemporalConstant, _retinaParameters.OPLandIplParvo.hcellsSpatialConstant, _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity);
    setupIPLMagnoChannel(_retinaParameters.IplMagno.normaliseOutput, _retinaParameters.IplMagno.parasolCells_beta, _retinaParameters.IplMagno.parasolCells_tau, _retinaParameters.IplMagno.parasolCells_k, _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency,_retinaParameters.IplMagno.V0CompressionParameter, _retinaParameters.IplMagno.localAdaptintegration_tau, _retinaParameters.IplMagno.localAdaptintegration_k);


}

const std::string Retina::printSetup()
{
    std::stringstream outmessage;

    // displaying OPL and IPL parvo setup
    outmessage<<"Current Retina instance setup :"
            <<"\nOPLandIPLparvo"<<"{"
            << "\n==> colorMode : " << _retinaParameters.OPLandIplParvo.colorMode
            << "\n==> normalizeParvoOutput :" << _retinaParameters.OPLandIplParvo.normaliseOutput
            << "\n==> photoreceptorsLocalAdaptationSensitivity : " << _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity
            << "\n==> photoreceptorsTemporalConstant : " << _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant
            << "\n==> photoreceptorsSpatialConstant : " << _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant
            << "\n==> horizontalCellsGain : " << _retinaParameters.OPLandIplParvo.horizontalCellsGain
            << "\n==> hcellsTemporalConstant : " << _retinaParameters.OPLandIplParvo.hcellsTemporalConstant
            << "\n==> hcellsSpatialConstant : " << _retinaParameters.OPLandIplParvo.hcellsSpatialConstant
            << "\n==> parvoGanglionCellsSensitivity : " << _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity
            <<"}\n";

    // displaying IPL magno setup
    outmessage<<"Current Retina instance setup :"
            <<"\nIPLmagno"<<"{"
            << "\n==> normaliseOutput : " << _retinaParameters.IplMagno.normaliseOutput
            << "\n==> parasolCells_beta : " << _retinaParameters.IplMagno.parasolCells_beta
            << "\n==> parasolCells_tau : " << _retinaParameters.IplMagno.parasolCells_tau
            << "\n==> parasolCells_k : " << _retinaParameters.IplMagno.parasolCells_k
            << "\n==> amacrinCellsTemporalCutFrequency : " << _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency
            << "\n==> V0CompressionParameter : " << _retinaParameters.IplMagno.V0CompressionParameter
            << "\n==> localAdaptintegration_tau : " << _retinaParameters.IplMagno.localAdaptintegration_tau
            << "\n==> localAdaptintegration_k : " << _retinaParameters.IplMagno.localAdaptintegration_k
            <<"}";
    return outmessage.str();
}

void Retina::write( std::string fs ) const
{
    FileStorage parametersSaveFile(fs, cv::FileStorage::WRITE );
    write(parametersSaveFile);
}

void Retina::write( FileStorage& fs ) const
{
    if (!fs.isOpened())
        return; // basic error case
    fs<<"OPLandIPLparvo"<<"{";
    fs << "colorMode" << _retinaParameters.OPLandIplParvo.colorMode;
    fs << "normaliseOutput" << _retinaParameters.OPLandIplParvo.normaliseOutput;
    fs << "photoreceptorsLocalAdaptationSensitivity" << _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity;
    fs << "photoreceptorsTemporalConstant" << _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant;
    fs << "photoreceptorsSpatialConstant" << _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant;
    fs << "horizontalCellsGain" << _retinaParameters.OPLandIplParvo.horizontalCellsGain;
    fs << "hcellsTemporalConstant" << _retinaParameters.OPLandIplParvo.hcellsTemporalConstant;
    fs << "hcellsSpatialConstant" << _retinaParameters.OPLandIplParvo.hcellsSpatialConstant;
    fs << "ganglionCellsSensitivity" << _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity;
    fs << "}";
    fs<<"IPLmagno"<<"{";
    fs << "normaliseOutput" << _retinaParameters.IplMagno.normaliseOutput;
    fs << "parasolCells_beta" << _retinaParameters.IplMagno.parasolCells_beta;
    fs << "parasolCells_tau" << _retinaParameters.IplMagno.parasolCells_tau;
    fs << "parasolCells_k" << _retinaParameters.IplMagno.parasolCells_k;
    fs << "amacrinCellsTemporalCutFrequency" << _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency;
    fs << "V0CompressionParameter" << _retinaParameters.IplMagno.V0CompressionParameter;
    fs << "localAdaptintegration_tau" << _retinaParameters.IplMagno.localAdaptintegration_tau;
    fs << "localAdaptintegration_k" << _retinaParameters.IplMagno.localAdaptintegration_k;
    fs<<"}";
}

void Retina::setupOPLandIPLParvoChannel(const bool colorMode, const bool normaliseOutput, const float photoreceptorsLocalAdaptationSensitivity, const float photoreceptorsTemporalConstant, const float photoreceptorsSpatialConstant, const float horizontalCellsGain, const float HcellsTemporalConstant, const float HcellsSpatialConstant, const float ganglionCellsSensitivity)
{
    // retina core parameters setup
    _retinaFilter->setColorMode(colorMode);
    _retinaFilter->setPhotoreceptorsLocalAdaptationSensitivity(photoreceptorsLocalAdaptationSensitivity);
    _retinaFilter->setOPLandParvoParameters(0, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, HcellsTemporalConstant, HcellsSpatialConstant, ganglionCellsSensitivity);
    _retinaFilter->setParvoGanglionCellsLocalAdaptationSensitivity(ganglionCellsSensitivity);
    _retinaFilter->activateNormalizeParvoOutput_0_maxOutputValue(normaliseOutput);

        // update parameters struture

    _retinaParameters.OPLandIplParvo.colorMode = colorMode;
    _retinaParameters.OPLandIplParvo.normaliseOutput = normaliseOutput;
    _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity = photoreceptorsLocalAdaptationSensitivity;
    _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant = photoreceptorsTemporalConstant;
    _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant = photoreceptorsSpatialConstant;
    _retinaParameters.OPLandIplParvo.horizontalCellsGain = horizontalCellsGain;
    _retinaParameters.OPLandIplParvo.hcellsTemporalConstant = HcellsTemporalConstant;
    _retinaParameters.OPLandIplParvo.hcellsSpatialConstant = HcellsSpatialConstant;
    _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity = ganglionCellsSensitivity;

}

void Retina::setupIPLMagnoChannel(const bool normaliseOutput, const float parasolCells_beta, const float parasolCells_tau, const float parasolCells_k, const float amacrinCellsTemporalCutFrequency, const float V0CompressionParameter, const float localAdaptintegration_tau, const float localAdaptintegration_k)
{

    _retinaFilter->setMagnoCoefficientsTable(parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, V0CompressionParameter, localAdaptintegration_tau, localAdaptintegration_k);
    _retinaFilter->activateNormalizeMagnoOutput_0_maxOutputValue(normaliseOutput);

        // update parameters struture
    _retinaParameters.IplMagno.normaliseOutput = normaliseOutput;
    _retinaParameters.IplMagno.parasolCells_beta = parasolCells_beta;
    _retinaParameters.IplMagno.parasolCells_tau = parasolCells_tau;
    _retinaParameters.IplMagno.parasolCells_k = parasolCells_k;
    _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency = amacrinCellsTemporalCutFrequency;
    _retinaParameters.IplMagno.V0CompressionParameter = V0CompressionParameter;
    _retinaParameters.IplMagno.localAdaptintegration_tau = localAdaptintegration_tau;
    _retinaParameters.IplMagno.localAdaptintegration_k = localAdaptintegration_k;
}

void Retina::run(const cv::Mat &inputMatToConvert)
{
    // first convert input image to the compatible format : std::valarray<float>
    const bool colorMode = _convertCvMat2ValarrayBuffer(inputMatToConvert, _inputBuffer);
    // process the retina
    if (!_retinaFilter->runFilter(_inputBuffer, colorMode, false, _retinaParameters.OPLandIplParvo.colorMode && colorMode, false))
        throw cv::Exception(-1, "Retina cannot be applied, wrong input buffer size", "Retina::run", "Retina.h", 0);
}

void Retina::getParvo(cv::Mat &retinaOutput_parvo)
{
    if (_retinaFilter->getColorMode())
    {
        // reallocate output buffer (if necessary)
        _convertValarrayBuffer2cvMat(_retinaFilter->getColorOutput(), _retinaFilter->getOutputNBrows(), _retinaFilter->getOutputNBcolumns(), true, retinaOutput_parvo);
    }else
    {
        // reallocate output buffer (if necessary)
        _convertValarrayBuffer2cvMat(_retinaFilter->getContours(), _retinaFilter->getOutputNBrows(), _retinaFilter->getOutputNBcolumns(), false, retinaOutput_parvo);
    }
    //retinaOutput_parvo/=255.0;
}
void Retina::getMagno(cv::Mat &retinaOutput_magno)
{
    // reallocate output buffer (if necessary)
    _convertValarrayBuffer2cvMat(_retinaFilter->getMovingContours(), _retinaFilter->getOutputNBrows(), _retinaFilter->getOutputNBcolumns(), false, retinaOutput_magno);
    //retinaOutput_magno/=255.0;
}

// original API level data accessors : copy buffers if size matches
void Retina::getMagno(std::valarray<float> &magnoOutputBufferCopy){if (magnoOutputBufferCopy.size()==_retinaFilter->getMovingContours().size()) magnoOutputBufferCopy = _retinaFilter->getMovingContours();}
void Retina::getParvo(std::valarray<float> &parvoOutputBufferCopy){if (parvoOutputBufferCopy.size()==_retinaFilter->getContours().size()) parvoOutputBufferCopy = _retinaFilter->getContours();}
// original API level data accessors : get buffers addresses...
const std::valarray<float> & Retina::getMagno() const {return _retinaFilter->getMovingContours();}
const std::valarray<float> & Retina::getParvo() const {if (_retinaFilter->getColorMode())return _retinaFilter->getColorOutput(); /* implicite else */return _retinaFilter->getContours();}

// private method called by constructirs
void Retina::_init(const cv::Size inputSz, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght)
{
    // basic error check
    if (inputSz.height*inputSz.width <= 0)
        throw cv::Exception(-1, "Bad retina size setup : size height and with must be superior to zero", "Retina::setup", "Retina.h", 0);

    unsigned int nbPixels=inputSz.height*inputSz.width;
    // resize buffers if size does not match
    _inputBuffer.resize(nbPixels*3); // buffer supports gray images but also 3 channels color buffers... (larger is better...)

    // allocate the retina model
        if (_retinaFilter)
           delete _retinaFilter;
    _retinaFilter = new RetinaFilter(inputSz.height, inputSz.width, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);

    _retinaParameters.OPLandIplParvo.colorMode = colorMode;
    // prepare the default parameter XML file with default setup
        setup(_retinaParameters);

    // init retina
    _retinaFilter->clearAllBuffers();

    // report current configuration
    std::cout<<printSetup()<<std::endl;
}

void Retina::_convertValarrayBuffer2cvMat(const std::valarray<float> &grayMatrixToConvert, const unsigned int nbRows, const unsigned int nbColumns, const bool colorMode, cv::Mat &outBuffer)
{
    // fill output buffer with the valarray buffer
    const float *valarrayPTR=get_data(grayMatrixToConvert);
    if (!colorMode)
    {
        outBuffer.create(cv::Size(nbColumns, nbRows), CV_8U);
        for (unsigned int i=0;i<nbRows;++i)
        {
            for (unsigned int j=0;j<nbColumns;++j)
            {
                cv::Point2d pixel(j,i);
                outBuffer.at<unsigned char>(pixel)=(unsigned char)*(valarrayPTR++);
            }
        }
    }else
    {
        const unsigned int doubleNBpixels=_retinaFilter->getOutputNBpixels()*2;
        outBuffer.create(cv::Size(nbColumns, nbRows), CV_8UC3);
        for (unsigned int i=0;i<nbRows;++i)
        {
            for (unsigned int j=0;j<nbColumns;++j,++valarrayPTR)
            {
                cv::Point2d pixel(j,i);
                cv::Vec3b pixelValues;
                pixelValues[2]=(unsigned char)*(valarrayPTR);
                pixelValues[1]=(unsigned char)*(valarrayPTR+_retinaFilter->getOutputNBpixels());
                pixelValues[0]=(unsigned char)*(valarrayPTR+doubleNBpixels);

                outBuffer.at<cv::Vec3b>(pixel)=pixelValues;
            }
        }
    }
}

bool Retina::_convertCvMat2ValarrayBuffer(const cv::Mat inputMatToConvert, std::valarray<float> &outputValarrayMatrix)
{
    // first check input consistency
    if (inputMatToConvert.empty())
        throw cv::Exception(-1, "Retina cannot be applied, input buffer is empty", "Retina::run", "Retina.h", 0);

    // retreive color mode from image input
    int imageNumberOfChannels = inputMatToConvert.channels();

        // convert to float AND fill the valarray buffer
    typedef float T; // define here the target pixel format, here, float
        const int dsttype = DataType<T>::depth; // output buffer is float format


    if(imageNumberOfChannels==4)
    {
    // create a cv::Mat table (for RGBA planes)
        cv::Mat planes[4] =
        {
            cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[_retinaFilter->getInputNBpixels()*2]),
            cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[_retinaFilter->getInputNBpixels()]),
            cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[0])
        };
        planes[3] = cv::Mat(inputMatToConvert.size(), dsttype);     // last channel (alpha) does not point on the valarray (not usefull in our case)
        // split color cv::Mat in 4 planes... it fills valarray directely
        cv::split(cv::Mat_<Vec<T, 4> >(inputMatToConvert), planes);
    }
    else if (imageNumberOfChannels==3)
    {
        // create a cv::Mat table (for RGB planes)
        cv::Mat planes[] =
        {
        cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[_retinaFilter->getInputNBpixels()*2]),
        cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[_retinaFilter->getInputNBpixels()]),
        cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[0])
        };
        // split color cv::Mat in 3 planes... it fills valarray directely
        cv::split(cv::Mat_<Vec<T, 3> >(inputMatToConvert), planes);
    }
    else if(imageNumberOfChannels==1)
    {
        // create a cv::Mat header for the valarray
        cv::Mat dst(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[0]);
        inputMatToConvert.convertTo(dst, dsttype);
    }
        else
            CV_Error(CV_StsUnsupportedFormat, "input image must be single channel (gray levels), bgr format (color) or bgra (color with transparency which won't be considered");

    return imageNumberOfChannels>1; // return bool : false for gray level image processing, true for color mode
}

void Retina::clearBuffers() {_retinaFilter->clearAllBuffers();}

void Retina::activateMovingContoursProcessing(const bool activate){_retinaFilter->activateMovingContoursProcessing(activate);}

void Retina::activateContoursProcessing(const bool activate){_retinaFilter->activateContoursProcessing(activate);}

} // end of namespace cv