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Abstract

We present an algorithm for real-time level of detail re-
duction and display of high-complexity polygonal surface
data. The algorithm uses a compact and e�cient regular
grid representation, and employs a variable screen-space
threshold to bound the maximum error of the projected
image. The appropriate level of detail is computed and
generated dynamically in real-time, allowing for smooth
changes of resolution across areas of the surface. The
algorithm has been implemented for approximating and
rendering digital terrain models and other height �elds,
and consistently performs at interactive frame rates with
high image quality. Typically, the number of rendered
polygons per frame can be reduced by two orders of mag-
nitude while maintaining image quality such that less
than 5% of the resulting pixels di�er from a full reso-
lution image.

1 Introduction

Modern graphics workstations allow the display of thou-
sands of shaded or textured polygons at interactive rates.
However, many applications contain graphical models with
geometric complexity still greatly exceeding the capabili-
ties of typical graphics hardware. This problem is partic-
ularly prevalent in applications dealing with large polyg-
onal surface models, such as digital terrain modeling and
visual simulation systems.

In order to accommodate such complex surface mod-
els while still maintaining real-time display rates, meth-

ods for approximating the polygonal surfaces and using
multiresolution models have been proposed [13]. Approx-
imation algorithms can be used to generate multiple sur-
face models at varying levels of detail, and techniques are
employed by the display system to select the appropriate
level of detail and render it appropriately.

In this paper we present a new level of detail dis-
play algorithm that is applicable to surfaces that are rep-
resented as uniformly-gridded height �elds. The algo-
rithm greatly reduces the number of polygons to be ren-
dered, providing for real-time rendering of complex sur-
faces while meeting user-controlled constraints on image
quality, and does not su�er from the limitations of previ-
ous algorithms.

� Our algorithm is fast. In typical visual simulation
applications containing large, high-resolution ter-
rain surface models, our algorithm allows sustained
frame rates on the order of 20 frames per second.

� Our algorithm meets a user-speci�ed image quality
metric. The algorithm is easily controlled to meet
an image accuracy level within a speci�ed number of
pixels. This parameterization allows for easy vari-
ation of the balance between rendering time and
rendered image quality.

� Our algorithmprovides for smooth, continuous changes
between di�erent surface levels of detail. The ap-
propriate level of detail for an area of the surface is
computed dynamically, in real-time, with no need
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for expensive generation of multiple level of detail
models ahead of time.

Related approaches to polygonal surface approxima-
tion and multiresolution rendering are discussed in the
next section. The following sections of the paper describe
the data structures and procedures for implementing the
real-time continuous rendering algorithm. We conclude
the paper by empirically evaluating the algorithm with
results from its use in a typical application.

2 Related Work

A large number of researchers have developed algorithms
for approximating terrains and other height �elds using
polygonal meshes. Heckbert and Garland [14] review
many of these surface simpli�cation methods, categoriz-
ing the algorithms into several groups, including uniform
grid methods (which use a regular grid of height sam-
ples), hierarchical subdivision methods, and general tri-
angulation methods (such as those that employ Delaunay
triangulation techniques).

Much of the previous work on polygonalization of terrain-
like surfaces has concentrated on triangulated irregular
networks (TINs). A number of di�erent approaches have
been developed to create TINs from height �elds using
Delaunay and other triangulations [8, 3, 17, 19, 18, 10].
TINs allow variable spacing between vertices of the trian-
gular mesh, approximating a surface at any desired level
of accuracy with fewer polygons than other representa-
tions. Fowler and Little [8] construct TINs characterized
by certain \surface speci�c" points and critical lines, al-
lowing the TIN representation to closely match important
terrain features. However, the algorithms required to cre-
ate TIN models are generally computationally expensive,
prohibiting use of dynamically created TINs at interac-
tive rates.

Regular grid surface polygonalizations have also been
implemented as terrain and general surface approxima-
tions [2, 6]. Such a uniform polygonalization generally
produces manymore polygons than a TIN for a given level
of approximation, but the grid representation is typically
more compact. Regular grid representations also have the
advantage of allowing for easier construction of a multi-
ple level of detail hierarchy. Simply subsampling grid
elevation values produces a coarser level of detail model,
whereas TIN models generally require complete retrian-
gulation in order to generate multiple levels of detail.

Other surface approximation representations include
hybrids of these techniques, and Douglas's \richline"model.
Douglas [4] located speci�c terrain features such as ridges

and channels in a terrain surface data set, representing
the surface with line segments from these \information
rich" lines. This method generates only a single sur-
face approximation, however, and is not easily adapted
to produce multiresolution models. Gross et al. [12] use
a wavelet transform to produce adaptive surface meshing
from uniform grid data, allowing for local control of the
surface level of detail.

The issue of \continuous" level of detail representa-
tions for models has been addressed both for surfaces and
more general modeling. Taylor and Barret [22] give an
algorithm for surface polygonalization at multiple levels
of detail, and use \TIN morphing" to provide for visu-
ally continuous change from one resolution to another.
Many visual simulation systems handle transitions be-
tween multiple levels of detail by alpha blending two mod-
els during the transition period. Ferguson [7] claims that
such blending techniques between adjacent levels of de-
tail may be visually distracting, and discusses a method
of Delaunay triangulation and triangle subdivision which
smoothly matches edges across areas of di�erent level of
detail.

3 Motivation

The algorithm presented in this paper is a powerful hy-
brid of algorithms that combines the large complexity re-
duction obtained in TIN constructions, and the 
exibil-
ity provided by regular grids, while avoiding many of the
drawbacks inherent in these types of algorithms. By ex-
tending the regular grid representation to allow polygons
to be recursively \fused" where appropriate, a larger poly-
gon reduction can be obtained. The notion of a continu-
ous level of detail obtained via small, incremental changes
to the mesh polygonalization, here plays an important
role, and provides a rigid framework for accommodat-
ing frame rate consistency algorithms. The simpli�cation
algorithm guarantees to meet a user-speci�ed image ac-
curacy constraint, which can be modi�ed interactively to
obtain desirable visual results and/or frame update rates.

Desirable characteristics for a real-time, level of detail
(LOD) algorithm for height �elds include:

(i) The mesh geometry and the components that de-
scribe it should at any instant be directly and ef-
�ciently queryable. Polygonal surfaces should be
traceable and allow for fast spatial indexing.

(ii) Dynamic changes to the geometry of the mesh should
not signi�cantly impact the performance of the sys-
tem. That is, recomputation of parameters and/or
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repolygonalization or reconstruction of the geome-
try should be virtually instantaneous.

(iii) High frequency data such as localized convexities
and concavities, and/or local changes to the geom-
etry, should remain local without having a larger
global e�ect on the complexity of the model.

(iv) Small changes to the view parameters (e.g. view-
point, view direction, �eld of view) should lead only
to small changes in complexity in order to minimize
uncertainties in prediction and allow maintenance
of (near) constant frame rates.

(v) The algorithm should provide a means of bounding
the loss in image quality incurred by the approxi-
mated geometry of the mesh. That is, there should
exist a consistent and simple relationship between
the input parameters to the LOD algorithm, and
the resulting image quality.

Note that some applications do not require the sat-
isfaction of all of these criteria. However, these are all
general issues and, in particular, need to be addressed
in the design of a level of detail algorithm for polygonal
terrain meshes, which is our target application domain.

Most contemporary approaches to level of detail man-
agement fail to meet at least one of these �ve criteria. TIN
models, for example, do not in general meet the �rst two
criteria. Generation of even modest size TINs require ex-
tensive computational e�ort, and to our knowledge, can-
not be done in real-time. Because TINs are non-uniform
in nature, surface following (e.g. for animation of objects
on the surface) and intersection (e.g. for collision detec-
tion, selection, and queries) are hard to handle e�ciently
due to the lack of a spatial organization of the mesh poly-
gons. The importance of (ii) is relevant in many appli-
cations, such as games and military applications where
explosions dynamically deform the terrain.

The most common drawback of regular grid represen-
tations is that the polygonalization is seldom optimal, or
even near optimal. Large, 
at surfaces may require the
same polygon density as small, rough areas do. This is
due to the sensitivity to localized, high frequency data
within large, uniform resolution areas of lower complex-
ity. (Most level of detail algorithms require that the mesh
is subdivided into rectangular blocks of polygons to allow
for fast view culling and level of detail selection, and the
blocks may also serve as a unit of transfer in data paging.)
Hence, (iii) is violated as a small bump in the mesh may
force higher resolution data than is needed to describe
the remaining area of a block. This problem may be al-
leviated by reducing the overall complexity and applying

temporal blending, or morphing, between di�erent levels
of detail to avoid \popping" in the mesh [15, 22].

Common to typical TIN and regular grid LOD algo-
rithms is the discreteness of the levels of detail. Often,
only a relatively small number of models for a given area
are de�ned, and the di�erence in the number of polygons
in successive levels of detail may be quite large. When
switching between two levels of detail, the net change in
the number of rendered polygons may amount to a rather
large fraction of the given rendering capacity, and may
cause rapid 
uctuations in the frame rate, making frame
rate consistency and prediction problematic.

Many LOD algorithms fail to recognize the need for
an error bound in the rendered image. While many sim-
pli�cation methods are mathematically viable, the level
of detail generation and selection are often not directly
coupled with the screen-space error resulting from the
simpli�cation. Rather, these algorithms are used to char-
acterize the data with a small set of parameters that, in
conjunction with viewpoint distance and view angle, may
be used to select what could be deemed appropriate lev-
els of detail. Examples of such algorithms include TIN
simpli�cation [8], feature (e.g. peaks, ridges, and val-
leys) identi�cation and preservation [21, 4], and frequency
analysis/transforms such as wavelet simpli�cation [5, 12].
These algorithms do, in general, not provide enough infor-
mation to derive a tight bound on the maximum error in
the projected image. For example, given a set of TINs for
an area, it is not immediately obvious which model should
be rendered for a given viewpoint unless the factors that
contribute to the error in the image can be parameterized,
stored, and later evaluated in screen-space coordinates. If
image quality is important and \popping" e�ects need to
be minimized in animations, the level of detail selection
should be based on a user-speci�ed error tolerance mea-
sured in screen-space, and should preferably be done on
a per polygon/vertex basis.

The algorithm presented in this paper satis�es all of
the above criteria. Some key features of the algorithmare:

exibility and e�ciency{ the internal representation is a
regular grid; localized polygon densities{ the resolution
within a block may vary; screen-space error-driven LOD
selection{a single threshold determines the image quality;
and continuous level of detail, which will be discussed in
the following section.

3.1 Continuous Level of Detail

Continuous level of detail has recently been used to de-
scribe a variety of properties [7, 17, 22], some of which will
be described below. As mentioned in (iii) and (iv) above,
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it is important that the complexity changes smoothly be-
tween consecutive frames, and that the simpli�ed geome-
try doesn't lead to gaps or popping in the mesh. In a more
precise description of the term continuity in the context
of level of detail, the continuous function, its domain, and
its range must be clearly de�ned. This function may be
one of the following:

(i) The elevation function z(x; y; t), where x; y; t 2 R.
The parameter tmay denote time, distance, or some
other scalar quantity. This function is used to morph
(blend) the geometries of two discrete levels of de-
tail de�ned on the same area, resulting in a virtu-
ally continuous change in level of detail over time,
or distance from the viewpoint to the mesh [22].

(ii) The elevation function z(x; y) with domainR2. The
function z is de�ned piecewise on a per block basis.
When discrete levels of detail are used to represent
the mesh, two adjacent blocks of di�erent levels of
detail may not align properly, and gaps along the
boundaries of the blocks may be seen. The elevation
z on these borders will not be continuous unless
precautions are taken to ensure that such gaps are
smoothed out.

(iii) The number of polygons rendered (after clipping)
n(v), where v is the viewpoint vector.1 Since the
image of n is discrete, continuity is here somewhat
informally de�ned in terms of the modulus of conti-
nuity !(�). We say that n is continuous i� !(�) !
"; " � 1 as � ! 0. That is, for su�ciently small
changes in the viewpoint, the change in the num-
ber of polygons rendered is at most one. Note that
this type of continuity does not explicitly imply that
the polygon distribution over R2 changes smoothly
with v, e.g. if modeled as a knapsack problemwhere
the number of polygons rendered is (near) constant,
the \polygon density" may vary rapidly over a given
area [9].

(iv) The \polygon density" or polygon distribution func-
tion n(v; A), where A is any �xed subset of R2. For
a given area A, the number of polygons used to de-
scribe that area is continuous with respect to the
viewpoint v. Note that A does not necessarily have
to be a connected set. There is a subtle di�erence
between this type of continuity and (iii), in which
A depends on v.

1This vector may be generalized to describe other view depen-

dent parameters, such as view direction and �eld of view.

Note that a continuous level of detail algorithm may
possess one or more of these independent properties (e.g.
(i) does in general not imply (iii), and vice versa). The
algorithm presented here primarily �ts the last two de�-
nitions of continuity, but has been designed to be easily
extensible to cover the other two de�nitions.

4 Simpli�cation

The simpli�cation process used in this algorithm is reduc-
tive, meaning that many smaller polygons are successively
removed and replaced with fewer, larger polygons. The
polygons are here triangles formed by connecting vertices
laid out on the rectilinear grid of integer-valued elevation
points that constitutes the height �eld database. Concep-
tually, at the beginning of each rendered frame, the entire
database at its highest resolution is considered. Wherever
certain conditions are met, a pair of triangles is reduced
to one single triangle, and the resulting triangle and its
co-triangle (if one exists) are considered for further sim-
pli�cation in a recursive manner. In order to perform
this simpli�cation, the height �eld must �rst be triangu-
lated, and triangle/co-triangle pairs must be identi�ed.
Figure 1 shows the height �eld triangulation for meshes
of di�erent dimensions, as well as the triangle/co-triangle
pairs, where each pair is assigned a unique letter, e.g.
4alar = (al; ar) is a pair. Second level pairs are de-
�ned as pairs of pairs of triangles, e.g. 4alar and 4blbr

form another triangle pair, denoted by ((al; ar); (bl; br)).
The smallest mesh representable using this symmetrical
triangulation (the primitive mesh) has dimensions 3 � 3
vertices, and successively larger meshes are formed by
grouping four smaller meshes in a 2� 2 array con�gura-
tion. This recursive de�nition of the mesh imposes two
major constraints on the dimensions xdim and ydim of the
blocks that make up the mesh: xdim = ydim = 2n + 1 for
some integer n � 1, although the resolutions (vertex spac-
ings) xres and yres do not necessarily have to be the same.
Depending on the implementation, these blocks could, for
instance, represent the quadnodes in a quadtree [16]. All
blocks have the same vertex dimensions (i.e. they contain
the same number of vertices), but may di�er in resolution
and area. Adjacent blocks share the vertices that lie on
the block edges.

The conditions under which a triangle pair can be co-
alesced into a single triangle are primarily described by
the amount of change in slope between the two triangles.
For triangles 4ABE and 4BCE, 6 ABE > 6 AEB, and
6 CBE > 6 CEB, this change is measured by the vertical
(z axis) distance �B = 2jB � A+C

2
j = j2B � (A+C)j, i.e.
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Figure 1: Triangulation of uniform height �elds of dimen-
sions d = 3 and d = 5.

twice the maximumvertical distance between 4ACE and
the triangles 4ABE and 4BCE (see Figure 2).2 This
is referred to as the vertex's delta value. In general, as
the delta value increases, the chance of triangle fusion
decreases. By projecting the delta segment, de�ned by B

and the midpoint of AC, onto the projection plane, one
can determine the maximumperceived geometric (linear)
error between the coalesced triangle and its \children."
(Note that the error (change) in volume is proportional
to the delta value; �V = �xresyres

6
�.) If this linear error

is smaller than a given threshold, � , the triangles may be
fused. If the resulting triangle has a co-triangle (that is, if
the co-triangle's error also is smaller than the threshold),
this pair is considered for further simpli�cation. This pro-
cess is applied recursively until no further simpli�cation
can be made.

D

I F

E
H

A B

G
C

δB

δD

δF

Figure 2: Geometric representation of delta values. �B =
8, �D = 5, �F = 3, �H = 0.

We now derive a formula for the length of the pro-

2The reason for doubling this distance is due to its representation

as an integer value.

jected delta segment. Let v be the midpoint3 of the
delta segment, and de�ne v+ = v +

�
0 0 �

4

�
, v� =

v � � 0 0 �
4

�
. Let e be the viewpoint and x̂, ŷ, ẑ be

the orthonormal eye coordinate axes expressed in world
coordinates. Furthermore, let n be the distance from e

to the projection plane, and de�ne � to be the number of
pixels per world coordinate unit in the screen x-y coor-
dinate system. (We assume, for simplicity, that the pixel
aspect ratio is 1:1.) The subscripts eye and screen are
used to denote vectors represented in eye coordinates (af-
ter the view transformation) and screen coordinates (after
the perspective projection) respectively. Then, the view-
ing matrix is de�ned as:

M =

2
664

x̂x ŷx ẑx 0
x̂y ŷy ẑy 0
x̂z ŷz ẑz 0
�e � x̂ �e � ŷ �e � ẑ 1

3
775 :

Using these de�nitions, the following approximations are
made:

� When projecting the vectors v+ and v�, their mid-
point v is always assumed to be in the center of
view, i.e. along �ẑ. This approximation is reason-
able as long as the �eld of view is relatively small.
For a 60� �eld of view, the maximum error due to
this approximation is less than 15%, and its e�ect is
that projected objects away from the center of view
appear relatively smaller than objects closer to the
center of view. Hence, the projected delta segments
that represent the errors in the triangle simpli�ca-
tion become relatively smaller at the periphery of
the screen, leading to relatively higher detail in the
center of view. This artifact is often acceptable as
the focus is often placed on the center of the screen,
while the visual perception is degraded toward the
periphery.

� In the perspective division 1
�veyez

, we assume v+eyez '
v
�
eyez

' veyez . This is a fair assumption since, in
general, � � jje� vjj = �veyez .

According to the �rst approximation, the viewing matrix
should be de�ned as:

3Rather than having to compute the midpoint of the delta seg-
ment at (x; y), one may safely substitute the vertex located at (x; y)
for v.
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M =

2
6664

x̂x ŷx
ex�vx
jje�vjj 0

x̂y ŷy
ey�vy
jje�vjj 0

x̂z ŷz
ez�vz
jje�vjj 0

�e � x̂ �e � ŷ �e � e�v
jje�vjj 1

3
7775 :

The length of the projected delta segment is then de-
scribed by the following set of equations:

v+eye � v�eye = v+M� v�M

= (v+ � v�)M

=
�
0 0 �

2
0
�
M

=
�

2

h
x̂z ŷz

ez�vz
jje�vjj 0

i

x̂
2
z + ŷ

2
z = 1�

�
ez � vz

jje� vjj

�2

�screen = jjv+screen � v�screenjj

=
n�

q
(v+eyex � v

�
eyex)2 + (v+eyey � v

�
eyey )2

�veyez

=
n�

r�
�x̂z
2

�2
+
�
�ŷz
2

�2
jje� vjj

=
n��

r
1�

�
ez�vz
jje�vjj

�2
2jje� vjj

=
n��

q
(ex�vx)2+(ey�vy)2

(ex�vx)2+(ey�vy)2+(ez�vz)2

2
p
(ex � vx)2 + (ey � vy)2 + (ez � vz)2

=
k�

p
(ex � vx)2 + (ey � vy)2

(ex � vx)2 + (ey � vy)2 + (ez � vz)2
(1)

�
2
screen =

k
2
�
2((ex � vx)

2 + (ey � vy)
2)

((ex � vx)2 + (ey � vy)2 + (ez � vz)2)2
(2)

For performance reasons, �2screen is compared to �2 so
that the square root can be avoided. The inequality that
de�nes the simpli�cation condition can be reduced to a
few additions and multiplications:

k
2
�
2((ex � vx)

2 + (ey � vy)
2)

((ex � vx)2 + (ey � vy)2 + (ez � vz)2)2
� �

2 ,

�
2((ex � vx)

2 + (ey � vy)
2) �

�((ex � vx)
2 + (ey � vy)

2 + (ez � vz)
2)2 (3)

where � = �2

k2
is a constant. Whenever ex = vx and

ey = vy, i.e. when the viewpoint is directly above (below)
the delta segment, the projection is zero, and the trian-
gles are coalesced. The probability of satisfying the in-
equality decreases as ez approaches vz, or when the delta
segment is viewed from the side. Intuitively, this makes
sense{less detail is required for a top-down view of the
mesh (assuming a monoscopic view), while more detail is
necessary to accurately retain contours and silhouettes in
side views. The geometric interpretation of Equation 3 is
a solid torus centered at v, with major and minor radii
n��
�
. The internal representation and computation of the

delta values are further discussed in Section 6.

5 Levels of Detail

In order to allow for e�cient view culling and level of
detail selection, the mesh is broken up into rectangular
blocks. In an application of the algorithm described here,
these blocks are represented by a quadtree division of the
mesh, although other blocking schemes may be used. It
will be shown in the following sections that a gross sim-
pli�cation made on a per block basis can signi�cantly
reduce the amount of work required in the �ne-grained,
per polygon/vertex simpli�cation described in Section 4.
The term level of detail has been used somewhat loosely
up until this point, but will be given a more precise mean-
ing in Section 5.2. In order to maintain a coherent mesh,
further restrictions must be put on the simpli�cation con-
dition introduced in the previous section. Within and
across block boundaries, a network of dependencies be-
tween vertices exists that describes the limits of where
triangle fusion can occur.

5.1 Dependencies

As pointed out in Section 4, triangle fusion can occur
only when the triangles in the triangle pair appear on
the same level in the triangle subdivision. For example,
in Figure 1, 4alar and 4blbr cannot be coalesced unless
the triangles in both pairs (al; ar) and (bl; br) have been
fused. It can easily be seen that the triangle pairs repre-
sent binary trees, where the smallest triangles correspond
to terminal nodes, while coalesced triangles correspond
to higher level, nonterminal nodes (hence the subscripts
l and r for \left" and \right"). For example, 4al is a
terminal node, 4alar = (al; ar) is a two level tree where
the root node is a triangle formed by fusing4al and4ar ,
and ((al; ar); (bl; br)) is an example of a three level tree.

Another way of looking at triangle fusion is vertex
removal, i.e. when two triangles are fused, one vertex
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is removed. We call this vertex the base vertex of the
triangle pair. If the projected delta segment of a base
vertex exceeds the threshold � , we say that the vertex is
activated; if a vertex is removed, we say that it is disabled,
or that its enabled 
ag is false. Every triangle pair has a
co-pair associated with it,4 and the pair/co-pair share the
same base vertex. Hence, each base vertex corresponds
to two nodes in two separate, but interlocking, binary
vertex trees (see Figure 3). In Figure 1, the pairs (jl; jr)
and (kl; kr) share the base vertex that is incident with all
four triangles. A base vertex may be removed only if all
base vertices in the four subtrees have been removed. This
implies that the enabled attribute of a vertex depends on
its activated attribute, as well as the enabled attributes
of the children in trees T1 and T2, that is

activated(v)^
enabled(childl1(v)) ^
enabled(childr1(v)) ^
enabled(childl2(v)) ^
enabled(childr2(v)) ) enabled(v): (4)

Figure 3a-f show the dependency relations between ver-
tices. Figure 3i illustrates the tree structure, where tree
intersections have been separated for clarity. Figure 3h
shows the in
uence of an activated vertex over other ver-
tices that directly or indirectly depend on it.

To satisfy continuity condition (ii) (see Section 3.1),
the algorithmmust consider dependencies that cross block
boundaries. Since the vertices on block boundaries are
shared between adjacent blocks, one must ensure that
such shared vertices are referenced uniquely, so that the
dependencies may propagate across the boundaries. In
most implementations, such shared vertices are simply
duplicated, and these redundancies must be resolved be-
fore or during the simpli�cation stage. One way of ap-
proaching this is to access each vertex via a pointer, and
discard the redundant copies of the vertex when a block is
read, e.g. during the paging process from disk to memory.
Another approach is to ensure that the attributes of all
copies of a vertex are kept consistent when updates (e.g.
enabled and activated transitions) occur, which is some-
what similar to the way cache update protocols work.
This could be achieved by maintaining a circular linked
list of copies for each vertex.

4Triangle pairs with base vertices on the edges of the �nite data
set are an exception.

a. b. c.

d. e. f.

g. h. i.

Figure 3: Vertex dependencies. An arc from A to B in-
dicates that B depends on A. The middle bottom �gure
shows the chain of dependencies from the vertex shaded
in grey. The bottom-right �gure shows the four binary
vertex trees rooted at the center vertex.

5.2 Levels of Evaluation

Complex data sets may consist of millions of polygons,
and it is clearly infeasible to run the simpli�cation pro-
cess on all polygons for each individual frame. One would
like to be able to split the simpli�cation process up in two
phases; a coarse-grained simpli�cation which determines
which discrete levels of detail are needed for each block,
and a �ne-grained simpli�cation within each block. By
obtaining a rough estimate of which vertices can be elim-
inated in a block, one can often decimate the data by
several factors with little computational cost. For exam-
ple, if one immediately knew that all the solid vertices in
Figures 3e and 3f could be discarded, a di�erent level of
detail consisting only of the remaining vertices would be
used. We call these decimated vertices the block's lowest
level vertices. If the resulting block's lowest level vertices
can likewise be discarded, an even lower level of detail
would be used, and a large number of evaluations in the
simpli�cation process could be excluded.

We de�ne consecutive levels of detail by decimating
every other column and row of the next higher level of
detail. The coarse evaluation can be done by comput-
ing the maximum delta value for the potentially deci-
mated vertices for each block. Given the bounding box
(the smallest, axis-aligned rectangular volume that en-
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closes the block) of a block and this maximum value, one
can determine whether any of these vertices have delta
values large enough to exceed � for a given viewpoint.
If none of them do, a lower level of detail may be used.
We can expand on this idea to obtain at a more e�cient
simpli�cation algorithm. By using � , the view parame-
ters, and the bounding box, one can compute the smallest
delta value �l that, when projected, can exceed � , as well
as the largest delta value �h that may project smaller
than � . Delta values between these extremes fall in an
uncertainty interval, which we denote by Iu = [�l; �h], for
which Equation 3 has to be evaluated. Vertices with delta
values less than �l can readily be discarded without fur-
ther evaluation, and conversely, vertices with delta values
larger than �h cannot be removed. It would obviously be
very costly to compute Iu by reversing the projection to
get the delta value whose projection equals � for every
single vertex within the block, but one can approximate
Iu by assuming that the vertices are dense in the bound-
ing box of the block and, thus, obtain a slightly larger
superset of Iu. From here on, we will use Iu to denote
this superset.

To �nd the lower bound �l of Iu, the point in the
bounding box that maximizes the delta projection must
be found. From Equation 1, de�ne
r =

p
(ex � vx)2 + (ey � vy)2 and h = ez � vz. We seek

to maximize the function f(r; h) = r
r2+h2

subject to the
constraint v 2 B, where B is the set of points contained
in the bounding box, described by the two vectors

bmin =
�
bminx bminy bminz

�
bmax =

�
bmaxx bmaxy bmaxz

�
:

Clearly, h2 has to be minimized, which is done by setting
h = jez � clamp(bminz ; ez; bmaxz )j, where

clamp(xmin; x; xmax) =

8<
:

xmin if x < xmin

xmax if x > xmax

x otherwise
:

In the x-y plane, de�ne rmin to be the smallest distance
from

�
ex ey

�
to the rectangular slice (including the in-

terior) of the bounding box de�ned by
�
bminx bminy

�
and

�
bmaxx bmaxy

�
, and de�ne rmax to be the largest

such distance in the x-y plane. Via partial di�erentiation
with respect to r, the maximum fmax of f(r; h) is found
at r = h. If no v exists under the given constraints that
satis�es r = h, r is increased/decreased until v 2 B, i.e.
r = clamp(rmin; h; rmax).

The upper bound, �h, is similarly found by minimizing
f(r; h). This is accomplished by setting h = maxfjez �
bminz j; jez� bmaxz jg. fmin is then found when either r =
rmin or r = rmax, whichever yields a smaller f(r; h).

It is worth pointing out that r and h must always
satisfy the condition r

2 + h
2 � n

2, where n is the same
as in Section 4. Hence, r must be chosen such that r �p
n2 � h2 holds whenever h < n.
The bounds on Iu can now be found using the follow-

ing equations:

�l =

�
2�

n�fmax

�
(5)

�h =

( j
2�

n�fmin

k
if fmin > 0

�max if fmin = 0
(6)

After computation of Iu, the maximum delta value,
�sup,5 for the lowest level vertices of the block is compared
to �l, and if smaller, a lower resolution level of detail block
is substituted, and the process is repeated for this block.
If �sup � �l , it may be that a higher resolution block is
needed. By maintaining ��sup = maxif�supig, the largest
�sup of all higher resolution blocks (or block descendants)
for the given area, ��sup is compared to �l for the current
block, and if greater, four higher resolution blocks replace
the current block. This implicit hierarchical organization
of blocks is best represented as a quadtree, where each
block corresponds to a quadnode.

6 Data Structures

Many of the issues related to the data structures used in
this algorithm have purposely been left open, as di�erent
needs may demand totally di�erent approaches to their
representations. In one implementation, as few as six
bytes per vertex were used, and as many as 28 bytes were
needed to achieve the same goal in another. There are,
however, a small number of data structures, suggested
here, that will be common to most implementations. As
discussed in Section 5, each vertex possesses a number of
attributes in addition to the discrete elevation value. One
such attribute is the delta value. Assuming 16-bit, un-
signed elevation values, the range of delta values becomes
[�min; �max] = [0; j2zmax � (zmin + zmin)j] = [0; 131070].
However, height �elds are in general fairly smooth, and
from experience, �max seldom exceeds

p
zmax. Hence,

we have opted to use eight bits for the delta values, giv-
ing a �max of 255. Delta values that exceed 255 must,

5The subscript sup stands for supremum; the largest member of

a closed set.
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however, be representable. To accurately represent the
frequently occurring, small delta values, while allowing
for occasional, larger delta values, a non-linear mapping
c : [0; zmax]! [0; �max] that we call the delta compression
function is applied. (Delta values larger than zmax are so
rare that we have chosen not to consider them.) We �rst
consider the decompression function c

�1,6 which should
satisfy c

�1(0) = 0 and c
�1(�max) = c

�1(255) = 65535 =
zmax, and for small x, we want c

�1(x) ' x. Another
requirement is x � c

�1(c(x)) < c
�1(c(y)) = y for some

y > x. The function

c
�1(x) = b(x+ 1)1+x

2=2552 � 1c (7)

satis�es all of these properties. Figure 4 shows the graph
of c�1. The compression function c can then be derived
from c

�1 and the above constraints. Both functions are,
for performance reasons, implemented as lookup tables.

50 100 150 200 250
0

2500

5000

7500

10000

12500

15000

Figure 4: The delta decompression function c
�1(x) and

f(x) = x.

In addition to the delta value, a number of 
ags must
be maintained for each vertex (see Section 5). The 
ags
enabled and activated, as well as four dependency bits
are stored with the delta value (see Figures 3d and 3e).
These dependency bits re
ect the values of the enabled

bits of the four \children" (if any) of the vertex. Because
the enabled bits do not change very frequently, these re-
dundant dependency bits are updated only when a child's
enabled bit is changed, leading to more e�cient accesses
in the evaluation of the enabled value, and also an ar-
bitrary order of evaluations. The enabled 
ag can be
hardwired to either true or false by setting the locked

bit of the vertex. This may be necessary, for example,
when eliminating gaps between adjacent blocks if com-
patible levels of detail do not exist, i.e. some vertices on

6
c
�1 is not the true inverse of c as the compression scheme is

lossy.

the boundaries of the higher resolution block may have
to be disabled. The vertex data structure is shown in
Figure 5.

10
11
12
13
14
15

  9
  8
  7

  0

reserved

locked

enabled

activated

elevation value

15

  0

compressed

δ value

dependency n/ne

dependency e/nw

dependency s/se

dependency w/sw

Figure 5: The 32-bit vertex data structure. The bit re-
served has been reserved for future use.

In the previous section, we derived the uncertainty in-
terval Iu. It was here implied that vertices within ranges
of delta values could immediately be accessed. To allow
such accesses, the vertices must be sorted on their delta
values. However, provision for instantaneous, spatial ac-
cess to the vertices is required by tasks such as rendering
and surface following. This is accomplished by creating
an array of indices, where the entries are sorted on the
corresponding vertices' delta values. Each entry uniquely
references the corresponding vertex via an index pair (i; j)
into the 2D array of vertex structures.7 For each possible
delta value, there is a pointer (index) p� to a bin that con-
tains the indices to the vertices having that delta value.
The 256 bins are stored in ascending order in a contigu-
ous, one-dimensional array. The entries in bin i are then
indexed by pi; pi+ 1; : : : ; pi+1� 1 (pi = pi+1 implies that
bin pi is empty). Figure 6 illustrates the bin/pointer data
structures. The pointers pi could be represented by 16-bit
indices to save memory space.

7 Algorithm Outline

The heart of the algorithm presented here is in the se-
lection of which vertices should be included for rendering

7Alternatively, the vertices could be stored in a 1D, row (column)
major array, where only a single index i is needed.
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δ = 0 δ = 2 δ = δmax

0 1 2 δmax

δ bins

δ pointers

Figure 6: Delta bin data structure. The top, dashed entry
is used to delimit the last delta bin.

of the mesh. In Section 7.1, we describe how the mesh
is rendered once the vertex selection is done. The ver-
tex selection algorithm can roughly be split up in two
parts; level of detail (block) selection, and vertex selec-
tion within each block. Using the data structures and
equations presented in previous sections, the algorithm is
summarized by the pseudo-code below. Unless quali�ed
with superscripts, all variables are assumed to belong to
the current frame and block.

main()

1 for each frame n
2 for each active block b

3 compute Iu (Equations 5 and 6)
4 if �sup < �l

5 replace b with lower resolution block
6 else if ��sup > �l

7 replace b with higher resolution blocks
8 for each active block b

9 determine if b intersects the view frustum
10 for each visible block b

11 I0  [�n�1
l ; �

n
l � 1]

12 I1  [�nh + 1; �n�1
h ]

13 for each vertex v with �(v) 2 I0

14 activated(v)  false

15 update-vertex(v)

16 for each vertex v with �(v) 2 I1

17 activated(v)  true

18 update-vertex(v)

19 for each vertex v with �(v) 2 Iu

20 evaluate-vertex(v)

21 for each visible block b

22 render-block(b)

update-vertex(v)

1 if :locked(v)
2 if :dependencyi(v) 8i
3 if enabled(v) 6= activated(v)
4 enabled(v) :enabled(v)
5 notify(dependentl(v); dir(l); enabled(v))
6 notify(dependentr(v); dir(r); enabled(v))

evaluate-vertex(v)

1 if :locked(v)
2 if :dependencyi(v) 8i
3 activated(v)  :Equation 3
4 if enabled(v) 6= activated(v)
5 enabled(v) :enabled(v)
6 notify(dependentl(v); dir(l); enabled(v))
7 notify(dependentr(v); dir(r); enabled(v))

notify(v; dir; flag)

1 if v is a valid vertex
2 dependencydir(v)  flag

3 if :locked(v)
4 if :dependencyi(v) 8i
5 if :activated(v)
6 enabled(v) false

7 notify(dependentl(v); dir(l), false)
8 notify(dependentr(v); dir(r), false)
9 else

10 if :enabled(v)
11 enabled(v) true

12 notify(dependentl(v); dir(l), true)
13 notify(dependentr(v); dir(r), true)

The term active block refers to whether the block is
currently the chosen level of detail for the area it cov-
ers. All blocks initially have Iu set to [0; �max], and so do
blocks that previously were inactive or outside the �eld
of view. When deactivating vertices with delta values
smaller than �l , the interval I0 � [0; �l � 1] is traversed
as vertices with smaller delta must have been deactivated
in previous frames. Similarly, I1 is used for vertex ac-
tivation. In quadtree implementations, the condition on
line 4 in main may have to be aggregated; the condition
�sup < �l should hold for all siblings of b before b can be
replaced.

If a vertex's enable attribute changes, all dependent
vertices must be noti�ed of this change so that their
corresponding dependency bits are kept consistent with
this change. The procedure update-vertex checks if
enabled(v) has changed, and if so, noti�es v's dependents
by calling notify. If the enabled bit of a dependent in
turn is modi�ed, notify is called recursively. Since line 2
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in notify necessarily involves a change of a dependency

bit, there may be a transition in enable(v) from true to
false on line 6 provided activate(v) is false as the ver-
tex is no longer dependent. The evaluation of Equation 3
on line 3 in evaluate-vertex can be deferred if any
of the vertex's dependency bits are set. Note that there
may be a one-frame delay before the activate attribute
is corrected due to this deferral if the child vertices are
evaluated after the dependent (see line 2 of evaluate-
vertex and lines 4-5 of notify). The function dir(x)
associated with a vertex v refers to the bit of dependent
x that re
ects the enabled bit of vertex v. Note that a
check has to be made (line 1 in notify) whether a vertex
is \valid" as some vertices have fewer than two depen-
dents (e.g. corner and center vertices in a block).

7.1 Mesh Rendering

Once the vertex selection is made, a coherent triangle
mesh must be formed that connects the selected ver-
tices. This mesh is de�ned by recursively bisecting right
triangles,8 stopping when the enabled attribute of a base
vertex is false. To e�ciently render the mesh, a triangle
mesh graphics primitive, such as the one supported by
IRIS GL and OpenGL [11, 20], may be used. For each
speci�ed vertex v, the previous two vertices and v form
the next triangle in the mesh. At certain points, the pre-
vious two vertices must be swapped via a swaptmesh()

call (IRIS GL), or a v3f() call (OpenGL). The two-entry
vertex stack is maintained explicitly to allow the decision
as to when to swap the stack to be made. The follow-
ing pseudo-code describes the mesh rendering algorithm.
This procedure is called four times by render-block

with two of the corner vertices vil and vir , and the center
vertex vit of the block. In the top level invocation, level
is 2n, where 2n + 1 is the block size, and post-swap is
false.

render-tmesh(il ; it; ir; level; post-swap)

1 if level > 0
2 if enabled(vit)
3 ib  il+ir

2

4 if it = bottom(my-stack)
5 swap top and bottom of my-stack
6 do-swap :do-swap
7 render-tmesh(il; ib; it; level � 1, false)
8 if it 6= top(my-stack) ^ it 6= bottom(my-stack)
9 if do-swap

8This assumes that the triangles are viewed in the x-y plane,
discarding the height component. In three dimensions, the triangles
may not be right, neither are they truly bisected.

10 swap graphics stack
11 do-swap false

12 render vertex vit

13 bottom(my-stack)  top(my-stack)
14 top(my-stack)  it

15 render-tmesh(it; ib; ir; level � 1, true)
16 if post-swap
17 swap top and bottom of my-stack
18 do-swap :do-swap

In render-block, one of the corner vertices must
�rst be rendered and put onmy-stack, and after render-
tmesh is called, the other corner vertex must be ren-
dered to close the mesh. ib is the index of the (base)
vertex that in the x-y plane is the midpoint of the edge
vilvir . Since my-stack re
ects what vertices are currently
on the graphics stack, line 10 could be implemented with
a v3f(), using the vertex indexed by bottom(my-stack).

8 Results

To show the e�ectiveness of the polygon reduction al-
gorithm, we here include graphs of number of polygons
and delta projections, frame rates, and error percentages
in the images produced. A set of color plates illustrate
wireframe triangulations, textured terrain, and di�erence
images that highlight the varying image quality result-
ing from di�erent choices of � . The height �eld data
used comes from a 2 � 2 meter uniform resolution dig-
ital elevation model of the Hunter-Liggett military base
in California, with discrete elevation values at one meter
height resolution. All 24-bit images were generated on
a two-processor, 150 MHz SGI Onyx RealityEngine2 [1],
and have dimensions 1024 � 768 pixels unless otherwise
speci�ed.

We �rst examine the amount of polygon reduction as
a function of the threshold � . A typical view of the ter-
rain, showing a variety of features such as ridges, valleys,
bumps, and relatively 
at areas, was chosen for this pur-
pose. Figure 7 shows four curves drawn on a logarithmic
scale (y-axis). The top vertical line shows the total num-
ber of polygons in the view frustum before any reduc-
tion method is applied. This number is approximately
23 million. The curve second from the top represents the
number of polygons remaining after the block-based level
of detail selection is done. We will use the data for this
curve as a representative case of multi-resolution regular
grid algorithms, and compare with our algorithm. This
is a fair comparison as the maximum error in the surface
geometry is the same for both algorithms. The number
of polygons rendered, i.e. remaining polygons after the
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vertex-based simpli�cation, is shown by the lowest solid
curve. As expected, these two curves 
atten out as �

is increased. The ratio of the total number of polygons
and the number of rendered polygons ranges from about
�ve (� = 0) to a little over 3,000 (� = 4). Of course, at
� = 0, only coplanar triangles are fused. The ratio of the
middle two curves varies between 5 and 55, giving a sig-
ni�cant advantage to our algorithm as � is increased. We
pay special attention to the data obtained at � = 1, as
this threshold is small enough that virtually no popping
can be seen in animated sequences, and for all purposes,
the resulting images are virtually identical to the ones
obtained with no simpli�cation. Color plates 1a{c illus-
trate the three cases of simpli�cation at � = 1. In Color
Plate 1c, note how many polygons are required for the
high frequency data, while only a few, large polygons are
used for the 
atter areas. For this particular threshold,
the ratio between the number of polygons before simpli-
�cation and the number of polygons after vertex-based
simpli�cation is 343, while the ratio between block-based
and vertex-based simpli�cation is 17. The bottommost,
dashed curve in Figure 7 represents the total number of
delta values that fall in the uncertainty interval per frame
(Section 5.2). Note that this quantity is generally an or-
der of magnitude smaller than the number of rendered
polygons. This is signi�cant as the evaluations associ-
ated with these delta values constitute the bulk of the
computation in terms of CPU time. This also shows the
advantage of computing the uncertainty interval{out of
the 11.5 million vertices contained in the view frustum,
only 14,000 evaluations of Equation 3 need to be made
when � = 1.
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Figure 7: The number of polygons as a function of � . The
bottom curve shows the number of times Equation 3 was
evaluated per frame.

In order to evaluate the errors due to the simpli�-
cation, the height �eld was textured using both a black
and white checkerboard pattern (Color plates 2a{c), and

real photoimagery (Color Plates 3a{c). Note that no
simpli�cation algorithm has been applied to the texture.
Again, the threshold is set to one pixel. The high con-
trast in the checkerboard pattern makes identi�cation
and interpretation of the errors easy in a di�erence im-
age, although the rendered images look virtually identi-
cal. To quantitatively measure the errors, all pixels that
do not match perfectly in the checkerboard images are
counted and assigned a unique color, leaving the remain-
ing pixels transparent, and are then superimposed on top
of the vertex-based simpli�cation wireframe images (see
Color Plates 4a{f). Figure 8 shows the percentage of non-
matching pixels as � is varied. In the case of � = 1, the
percentage of non-matching pixels is roughly 5%. Note
that when � = 0, the percentage should theoretically be
zero, but is in fact 0.25%. This is due to aliasing and
the �nite resolution supported by the z-bu�er, as many
distant polygons render into the same screen pixel. If
anti-aliasing were done, the errors in the images where �
is large would be relatively smaller. A quantitative anal-
ysis of the aliasing e�ects has not yet been done. In the
current implementation of the algorithm that was used for
image generation, cross block dependencies are ignored,
leaving occasional small gaps on the boundaries between
blocks when � exceeds one pixel. In the images presented
here, such gaps have been �lled by vertical polygons.

Threshold (pixels)

%
 d

if
fe

re
n

t 
p

ix
el

s

0

2

4

6

8

1 0

1 2

1 4

0

0
.2

5

0
.5

0
.7

5 1

1
.2

5

1
.5

1
.7

5 2

2
.2

5

2
.5

2
.7

5 3

3
.2

5

3
.5

3
.7

5 4

Figure 8: Percentage of erroneous pixels in vertex-based
simpli�cation checkerboard image.

Figure 9 shows how the quantities in Figure 7, as well
as the frame rate vary with time. The data collection for
3,230 frames was done over a time period of 120 seconds,
with the viewpoint following a circular path of radius 1
km. The terrain was rendered as a wireframe mesh in a
640� 480 window, with � = 2 pixels. It can be seen that
the number of rendered polygons does not depend on the
total number of polygons in the view frustum{as a matter
of fact, the number of rendered polygons is lowest at the
point when the number of visible polygons is close to its
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maximum. The number of rendered polygons depends
entirely on the complexity of the terrain intersected by the
view frustum. As evidenced by the graph, a frame rate of
at least 20 frames per second was sustained throughout
the two minutes of 
y-through.
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Figure 9: Time graph of (a) total number of polygons in
view frustum, (b) number of polygons after block-based
simpli�cation, (c) number of polygons after vertex-based
simpli�cation, (d) number of delta projections, and (e)
frames per second.

9 Conclusion

We have shown that the algorithm presented in this pa-
per, which is based on real-time, per polygon, level of
detail evaluation, can achieve interactive and consistent
frame rates exceeding twenty frames per second, with only
a minor loss in image quality. A polygon reduction of the
original data of a factor of 300 can be made with errors
below 5% in the resulting image. Compared to multi-
resolution, regular grid renderings of equal accuracy, this
algorithm generally performs more than ten times better
in terms of the number of rendered polygons. The concept
of continuous level of detail allows a polygon distribution
that is near optimal for any given viewpoint and frame,
and also yields smooth changes in the number of rendered
polygons. A single parameter that can be changed inter-
actively, with no incurred cost, determines the resulting
image quality, and a relationship between this parameter
and the number of rendered polygons exists, providing
capabilities for frame rate maintenance. Attractive fea-
tures attributed to regular grid representations, such as
fast geometric queries, compact representation, and fast
mesh rendering are retained. With little extra e�ort, the
algorithm can be extended to handle the problem of gaps
between blocks of di�erent levels of detail, as well as ge-
ometry blending to allow further polygon reduction with
elimination of popping e�ects.
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