/* --------------------------------------------------------------------------- Open Asset Import Library (assimp) --------------------------------------------------------------------------- Copyright (c) 2006-2012, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file aiVector2D.inl * @brief Inline implementation of aiVector2t<TReal> operators */ #ifndef AI_VECTOR2D_INL_INC #define AI_VECTOR2D_INL_INC #ifdef __cplusplus #include "vector2.h" #include <cmath> // ------------------------------------------------------------------------------------------------ template <typename TReal> template <typename TOther> aiVector2t<TReal>::operator aiVector2t<TOther> () const { return aiVector2t<TOther>(static_cast<TOther>(x),static_cast<TOther>(y)); } // ------------------------------------------------------------------------------------------------ template <typename TReal> void aiVector2t<TReal>::Set( TReal pX, TReal pY) { x = pX; y = pY; } // ------------------------------------------------------------------------------------------------ template <typename TReal> TReal aiVector2t<TReal>::SquareLength() const { return x*x + y*y; } // ------------------------------------------------------------------------------------------------ template <typename TReal> TReal aiVector2t<TReal>::Length() const { return ::sqrt( SquareLength()); } // ------------------------------------------------------------------------------------------------ template <typename TReal> aiVector2t<TReal>& aiVector2t<TReal>::Normalize() { *this /= Length(); return *this; } // ------------------------------------------------------------------------------------------------ template <typename TReal> const aiVector2t<TReal>& aiVector2t<TReal>::operator += (const aiVector2t& o) { x += o.x; y += o.y; return *this; } // ------------------------------------------------------------------------------------------------ template <typename TReal> const aiVector2t<TReal>& aiVector2t<TReal>::operator -= (const aiVector2t& o) { x -= o.x; y -= o.y; return *this; } // ------------------------------------------------------------------------------------------------ template <typename TReal> const aiVector2t<TReal>& aiVector2t<TReal>::operator *= (TReal f) { x *= f; y *= f; return *this; } // ------------------------------------------------------------------------------------------------ template <typename TReal> const aiVector2t<TReal>& aiVector2t<TReal>::operator /= (TReal f) { x /= f; y /= f; return *this; } // ------------------------------------------------------------------------------------------------ template <typename TReal> TReal aiVector2t<TReal>::operator[](unsigned int i) const { return *(&x + i); } // ------------------------------------------------------------------------------------------------ template <typename TReal> TReal& aiVector2t<TReal>::operator[](unsigned int i) { return *(&x + i); } // ------------------------------------------------------------------------------------------------ template <typename TReal> bool aiVector2t<TReal>::operator== (const aiVector2t& other) const { return x == other.x && y == other.y; } // ------------------------------------------------------------------------------------------------ template <typename TReal> bool aiVector2t<TReal>::operator!= (const aiVector2t& other) const { return x != other.x || y != other.y; } // --------------------------------------------------------------------------- template<typename TReal> bool aiVector2t<TReal>::Equal(const aiVector2t& other, TReal epsilon) const { return std::abs(x - other.x) <= epsilon && std::abs(y - other.y) <= epsilon; } // ------------------------------------------------------------------------------------------------ template <typename TReal> aiVector2t<TReal>& aiVector2t<TReal>::operator= (TReal f) { x = y = f; return *this; } // ------------------------------------------------------------------------------------------------ template <typename TReal> const aiVector2t<TReal> aiVector2t<TReal>::SymMul(const aiVector2t& o) { return aiVector2t(x*o.x,y*o.y); } // ------------------------------------------------------------------------------------------------ // symmetric addition template <typename TReal> inline aiVector2t<TReal> operator + (const aiVector2t<TReal>& v1, const aiVector2t<TReal>& v2) { return aiVector2t<TReal>( v1.x + v2.x, v1.y + v2.y); } // ------------------------------------------------------------------------------------------------ // symmetric subtraction template <typename TReal> inline aiVector2t<TReal> operator - (const aiVector2t<TReal>& v1, const aiVector2t<TReal>& v2) { return aiVector2t<TReal>( v1.x - v2.x, v1.y - v2.y); } // ------------------------------------------------------------------------------------------------ // scalar product template <typename TReal> inline TReal operator * (const aiVector2t<TReal>& v1, const aiVector2t<TReal>& v2) { return v1.x*v2.x + v1.y*v2.y; } // ------------------------------------------------------------------------------------------------ // scalar multiplication template <typename TReal> inline aiVector2t<TReal> operator * ( TReal f, const aiVector2t<TReal>& v) { return aiVector2t<TReal>( f*v.x, f*v.y); } // ------------------------------------------------------------------------------------------------ // and the other way around template <typename TReal> inline aiVector2t<TReal> operator * ( const aiVector2t<TReal>& v, TReal f) { return aiVector2t<TReal>( f*v.x, f*v.y); } // ------------------------------------------------------------------------------------------------ // scalar division template <typename TReal> inline aiVector2t<TReal> operator / ( const aiVector2t<TReal>& v, TReal f) { return v * (1/f); } // ------------------------------------------------------------------------------------------------ // vector division template <typename TReal> inline aiVector2t<TReal> operator / ( const aiVector2t<TReal>& v, const aiVector2t<TReal>& v2) { return aiVector2t<TReal>(v.x / v2.x,v.y / v2.y); } // ------------------------------------------------------------------------------------------------ // vector negation template <typename TReal> inline aiVector2t<TReal> operator - ( const aiVector2t<TReal>& v) { return aiVector2t<TReal>( -v.x, -v.y); } #endif #endif