/////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas // Digital Ltd. LLC // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Industrial Light & Magic nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /////////////////////////////////////////////////////////////////////////// #ifndef INCLUDED_IMATHQUAT_H #define INCLUDED_IMATHQUAT_H //---------------------------------------------------------------------- // // template class Quat<T> // // "Quaternions came from Hamilton ... and have been an unmixed // evil to those who have touched them in any way. Vector is a // useless survival ... and has never been of the slightest use // to any creature." // // - Lord Kelvin // // This class implements the quaternion numerical type -- you // will probably want to use this class to represent orientations // in R3 and to convert between various euler angle reps. You // should probably use Imath::Euler<> for that. // //---------------------------------------------------------------------- #include "ImathExc.h" #include "ImathMatrix.h" #include <iostream> namespace Imath { #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER // Disable MS VC++ warnings about conversion from double to float #pragma warning(disable:4244) #endif template <class T> class Quat { public: T r; // real part Vec3<T> v; // imaginary vector //----------------------------------------------------- // Constructors - default constructor is identity quat //----------------------------------------------------- Quat (); template <class S> Quat (const Quat<S> &q); Quat (T s, T i, T j, T k); Quat (T s, Vec3<T> d); static Quat<T> identity (); //------------------------------------------------- // Basic Algebra - Operators and Methods // The operator return values are *NOT* normalized // // operator^ and euclideanInnnerProduct() both // implement the 4D dot product // // operator/ uses the inverse() quaternion // // operator~ is conjugate -- if (S+V) is quat then // the conjugate (S+V)* == (S-V) // // some operators (*,/,*=,/=) treat the quat as // a 4D vector when one of the operands is scalar //------------------------------------------------- const Quat<T> & operator = (const Quat<T> &q); const Quat<T> & operator *= (const Quat<T> &q); const Quat<T> & operator *= (T t); const Quat<T> & operator /= (const Quat<T> &q); const Quat<T> & operator /= (T t); const Quat<T> & operator += (const Quat<T> &q); const Quat<T> & operator -= (const Quat<T> &q); T & operator [] (int index); // as 4D vector T operator [] (int index) const; template <class S> bool operator == (const Quat<S> &q) const; template <class S> bool operator != (const Quat<S> &q) const; Quat<T> & invert (); // this -> 1 / this Quat<T> inverse () const; Quat<T> & normalize (); // returns this Quat<T> normalized () const; T length () const; // in R4 Vec3<T> rotateVector(const Vec3<T> &original) const; T euclideanInnerProduct(const Quat<T> &q) const; //----------------------- // Rotation conversion //----------------------- Quat<T> & setAxisAngle (const Vec3<T> &axis, T radians); Quat<T> & setRotation (const Vec3<T> &fromDirection, const Vec3<T> &toDirection); T angle () const; Vec3<T> axis () const; Matrix33<T> toMatrix33 () const; Matrix44<T> toMatrix44 () const; Quat<T> log () const; Quat<T> exp () const; private: void setRotationInternal (const Vec3<T> &f0, const Vec3<T> &t0, Quat<T> &q); }; template<class T> Quat<T> slerp (const Quat<T> &q1, const Quat<T> &q2, T t); template<class T> Quat<T> slerpShortestArc (const Quat<T> &q1, const Quat<T> &q2, T t); template<class T> Quat<T> squad (const Quat<T> &q1, const Quat<T> &q2, const Quat<T> &qa, const Quat<T> &qb, T t); template<class T> void intermediate (const Quat<T> &q0, const Quat<T> &q1, const Quat<T> &q2, const Quat<T> &q3, Quat<T> &qa, Quat<T> &qb); template<class T> Matrix33<T> operator * (const Matrix33<T> &M, const Quat<T> &q); template<class T> Matrix33<T> operator * (const Quat<T> &q, const Matrix33<T> &M); template<class T> std::ostream & operator << (std::ostream &o, const Quat<T> &q); template<class T> Quat<T> operator * (const Quat<T> &q1, const Quat<T> &q2); template<class T> Quat<T> operator / (const Quat<T> &q1, const Quat<T> &q2); template<class T> Quat<T> operator / (const Quat<T> &q, T t); template<class T> Quat<T> operator * (const Quat<T> &q, T t); template<class T> Quat<T> operator * (T t, const Quat<T> &q); template<class T> Quat<T> operator + (const Quat<T> &q1, const Quat<T> &q2); template<class T> Quat<T> operator - (const Quat<T> &q1, const Quat<T> &q2); template<class T> Quat<T> operator ~ (const Quat<T> &q); template<class T> Quat<T> operator - (const Quat<T> &q); template<class T> Vec3<T> operator * (const Vec3<T> &v, const Quat<T> &q); //-------------------- // Convenient typedefs //-------------------- typedef Quat<float> Quatf; typedef Quat<double> Quatd; //--------------- // Implementation //--------------- template<class T> inline Quat<T>::Quat (): r (1), v (0, 0, 0) { // empty } template<class T> template <class S> inline Quat<T>::Quat (const Quat<S> &q): r (q.r), v (q.v) { // empty } template<class T> inline Quat<T>::Quat (T s, T i, T j, T k): r (s), v (i, j, k) { // empty } template<class T> inline Quat<T>::Quat (T s, Vec3<T> d): r (s), v (d) { // empty } template<class T> inline Quat<T> Quat<T>::identity () { return Quat<T>(); } template<class T> inline const Quat<T> & Quat<T>::operator = (const Quat<T> &q) { r = q.r; v = q.v; return *this; } template<class T> inline const Quat<T> & Quat<T>::operator *= (const Quat<T> &q) { T rtmp = r * q.r - (v ^ q.v); v = r * q.v + v * q.r + v % q.v; r = rtmp; return *this; } template<class T> inline const Quat<T> & Quat<T>::operator *= (T t) { r *= t; v *= t; return *this; } template<class T> inline const Quat<T> & Quat<T>::operator /= (const Quat<T> &q) { *this = *this * q.inverse(); return *this; } template<class T> inline const Quat<T> & Quat<T>::operator /= (T t) { r /= t; v /= t; return *this; } template<class T> inline const Quat<T> & Quat<T>::operator += (const Quat<T> &q) { r += q.r; v += q.v; return *this; } template<class T> inline const Quat<T> & Quat<T>::operator -= (const Quat<T> &q) { r -= q.r; v -= q.v; return *this; } template<class T> inline T & Quat<T>::operator [] (int index) { return index ? v[index - 1] : r; } template<class T> inline T Quat<T>::operator [] (int index) const { return index ? v[index - 1] : r; } template <class T> template <class S> inline bool Quat<T>::operator == (const Quat<S> &q) const { return r == q.r && v == q.v; } template <class T> template <class S> inline bool Quat<T>::operator != (const Quat<S> &q) const { return r != q.r || v != q.v; } template<class T> inline T operator ^ (const Quat<T>& q1 ,const Quat<T>& q2) { return q1.r * q2.r + (q1.v ^ q2.v); } template <class T> inline T Quat<T>::length () const { return Math<T>::sqrt (r * r + (v ^ v)); } template <class T> inline Quat<T> & Quat<T>::normalize () { if (T l = length()) { r /= l; v /= l; } else { r = 1; v = Vec3<T> (0); } return *this; } template <class T> inline Quat<T> Quat<T>::normalized () const { if (T l = length()) return Quat (r / l, v / l); return Quat(); } template<class T> inline Quat<T> Quat<T>::inverse () const { // // 1 Q* // - = ---- where Q* is conjugate (operator~) // Q Q* Q and (Q* Q) == Q ^ Q (4D dot) // T qdot = *this ^ *this; return Quat (r / qdot, -v / qdot); } template<class T> inline Quat<T> & Quat<T>::invert () { T qdot = (*this) ^ (*this); r /= qdot; v = -v / qdot; return *this; } template<class T> inline Vec3<T> Quat<T>::rotateVector(const Vec3<T>& original) const { // // Given a vector p and a quaternion q (aka this), // calculate p' = qpq* // // Assumes unit quaternions (because non-unit // quaternions cannot be used to rotate vectors // anyway). // Quat<T> vec (0, original); // temporarily promote grade of original Quat<T> inv (*this); inv.v *= -1; // unit multiplicative inverse Quat<T> result = *this * vec * inv; return result.v; } template<class T> inline T Quat<T>::euclideanInnerProduct (const Quat<T> &q) const { return r * q.r + v.x * q.v.x + v.y * q.v.y + v.z * q.v.z; } template<class T> T angle4D (const Quat<T> &q1, const Quat<T> &q2) { // // Compute the angle between two quaternions, // interpreting the quaternions as 4D vectors. // Quat<T> d = q1 - q2; T lengthD = Math<T>::sqrt (d ^ d); Quat<T> s = q1 + q2; T lengthS = Math<T>::sqrt (s ^ s); return 2 * Math<T>::atan2 (lengthD, lengthS); } template<class T> Quat<T> slerp (const Quat<T> &q1, const Quat<T> &q2, T t) { // // Spherical linear interpolation. // Assumes q1 and q2 are normalized and that q1 != -q2. // // This method does *not* interpolate along the shortest // arc between q1 and q2. If you desire interpolation // along the shortest arc, and q1^q2 is negative, then // consider calling slerpShortestArc(), below, or flipping // the second quaternion explicitly. // // The implementation of squad() depends on a slerp() // that interpolates as is, without the automatic // flipping. // // Don Hatch explains the method we use here on his // web page, The Right Way to Calculate Stuff, at // http://www.plunk.org/~hatch/rightway.php // T a = angle4D (q1, q2); T s = 1 - t; Quat<T> q = sinx_over_x (s * a) / sinx_over_x (a) * s * q1 + sinx_over_x (t * a) / sinx_over_x (a) * t * q2; return q.normalized(); } template<class T> Quat<T> slerpShortestArc (const Quat<T> &q1, const Quat<T> &q2, T t) { // // Spherical linear interpolation along the shortest // arc from q1 to either q2 or -q2, whichever is closer. // Assumes q1 and q2 are unit quaternions. // if ((q1 ^ q2) >= 0) return slerp (q1, q2, t); else return slerp (q1, -q2, t); } template<class T> Quat<T> spline (const Quat<T> &q0, const Quat<T> &q1, const Quat<T> &q2, const Quat<T> &q3, T t) { // // Spherical Cubic Spline Interpolation - // from Advanced Animation and Rendering // Techniques by Watt and Watt, Page 366: // A spherical curve is constructed using three // spherical linear interpolations of a quadrangle // of unit quaternions: q1, qa, qb, q2. // Given a set of quaternion keys: q0, q1, q2, q3, // this routine does the interpolation between // q1 and q2 by constructing two intermediate // quaternions: qa and qb. The qa and qb are // computed by the intermediate function to // guarantee the continuity of tangents across // adjacent cubic segments. The qa represents in-tangent // for q1 and the qb represents the out-tangent for q2. // // The q1 q2 is the cubic segment being interpolated. // The q0 is from the previous adjacent segment and q3 is // from the next adjacent segment. The q0 and q3 are used // in computing qa and qb. // Quat<T> qa = intermediate (q0, q1, q2); Quat<T> qb = intermediate (q1, q2, q3); Quat<T> result = squad (q1, qa, qb, q2, t); return result; } template<class T> Quat<T> squad (const Quat<T> &q1, const Quat<T> &qa, const Quat<T> &qb, const Quat<T> &q2, T t) { // // Spherical Quadrangle Interpolation - // from Advanced Animation and Rendering // Techniques by Watt and Watt, Page 366: // It constructs a spherical cubic interpolation as // a series of three spherical linear interpolations // of a quadrangle of unit quaternions. // Quat<T> r1 = slerp (q1, q2, t); Quat<T> r2 = slerp (qa, qb, t); Quat<T> result = slerp (r1, r2, 2 * t * (1 - t)); return result; } template<class T> Quat<T> intermediate (const Quat<T> &q0, const Quat<T> &q1, const Quat<T> &q2) { // // From advanced Animation and Rendering // Techniques by Watt and Watt, Page 366: // computing the inner quadrangle // points (qa and qb) to guarantee tangent // continuity. // Quat<T> q1inv = q1.inverse(); Quat<T> c1 = q1inv * q2; Quat<T> c2 = q1inv * q0; Quat<T> c3 = (T) (-0.25) * (c2.log() + c1.log()); Quat<T> qa = q1 * c3.exp(); qa.normalize(); return qa; } template <class T> inline Quat<T> Quat<T>::log () const { // // For unit quaternion, from Advanced Animation and // Rendering Techniques by Watt and Watt, Page 366: // T theta = Math<T>::acos (std::min (r, (T) 1.0)); if (theta == 0) return Quat<T> (0, v); T sintheta = Math<T>::sin (theta); T k; if (abs (sintheta) < 1 && abs (theta) >= limits<T>::max() * abs (sintheta)) k = 1; else k = theta / sintheta; return Quat<T> ((T) 0, v.x * k, v.y * k, v.z * k); } template <class T> inline Quat<T> Quat<T>::exp () const { // // For pure quaternion (zero scalar part): // from Advanced Animation and Rendering // Techniques by Watt and Watt, Page 366: // T theta = v.length(); T sintheta = Math<T>::sin (theta); T k; if (abs (theta) < 1 && abs (sintheta) >= limits<T>::max() * abs (theta)) k = 1; else k = sintheta / theta; T costheta = Math<T>::cos (theta); return Quat<T> (costheta, v.x * k, v.y * k, v.z * k); } template <class T> inline T Quat<T>::angle () const { return 2 * Math<T>::atan2 (v.length(), r); } template <class T> inline Vec3<T> Quat<T>::axis () const { return v.normalized(); } template <class T> inline Quat<T> & Quat<T>::setAxisAngle (const Vec3<T> &axis, T radians) { r = Math<T>::cos (radians / 2); v = axis.normalized() * Math<T>::sin (radians / 2); return *this; } template <class T> Quat<T> & Quat<T>::setRotation (const Vec3<T> &from, const Vec3<T> &to) { // // Create a quaternion that rotates vector from into vector to, // such that the rotation is around an axis that is the cross // product of from and to. // // This function calls function setRotationInternal(), which is // numerically accurate only for rotation angles that are not much // greater than pi/2. In order to achieve good accuracy for angles // greater than pi/2, we split large angles in half, and rotate in // two steps. // // // Normalize from and to, yielding f0 and t0. // Vec3<T> f0 = from.normalized(); Vec3<T> t0 = to.normalized(); if ((f0 ^ t0) >= 0) { // // The rotation angle is less than or equal to pi/2. // setRotationInternal (f0, t0, *this); } else { // // The angle is greater than pi/2. After computing h0, // which is halfway between f0 and t0, we rotate first // from f0 to h0, then from h0 to t0. // Vec3<T> h0 = (f0 + t0).normalized(); if ((h0 ^ h0) != 0) { setRotationInternal (f0, h0, *this); Quat<T> q; setRotationInternal (h0, t0, q); *this *= q; } else { // // f0 and t0 point in exactly opposite directions. // Pick an arbitrary axis that is orthogonal to f0, // and rotate by pi. // r = T (0); Vec3<T> f02 = f0 * f0; if (f02.x <= f02.y && f02.x <= f02.z) v = (f0 % Vec3<T> (1, 0, 0)).normalized(); else if (f02.y <= f02.z) v = (f0 % Vec3<T> (0, 1, 0)).normalized(); else v = (f0 % Vec3<T> (0, 0, 1)).normalized(); } } return *this; } template <class T> void Quat<T>::setRotationInternal (const Vec3<T> &f0, const Vec3<T> &t0, Quat<T> &q) { // // The following is equivalent to setAxisAngle(n,2*phi), // where the rotation axis, n, is orthogonal to the f0 and // t0 vectors, and 2*phi is the angle between f0 and t0. // // This function is called by setRotation(), above; it assumes // that f0 and t0 are normalized and that the angle between // them is not much greater than pi/2. This function becomes // numerically inaccurate if f0 and t0 point into nearly // opposite directions. // // // Find a normalized vector, h0, that is halfway between f0 and t0. // The angle between f0 and h0 is phi. // Vec3<T> h0 = (f0 + t0).normalized(); // // Store the rotation axis and rotation angle. // q.r = f0 ^ h0; // f0 ^ h0 == cos (phi) q.v = f0 % h0; // (f0 % h0).length() == sin (phi) } template<class T> Matrix33<T> Quat<T>::toMatrix33() const { return Matrix33<T> (1 - 2 * (v.y * v.y + v.z * v.z), 2 * (v.x * v.y + v.z * r), 2 * (v.z * v.x - v.y * r), 2 * (v.x * v.y - v.z * r), 1 - 2 * (v.z * v.z + v.x * v.x), 2 * (v.y * v.z + v.x * r), 2 * (v.z * v.x + v.y * r), 2 * (v.y * v.z - v.x * r), 1 - 2 * (v.y * v.y + v.x * v.x)); } template<class T> Matrix44<T> Quat<T>::toMatrix44() const { return Matrix44<T> (1 - 2 * (v.y * v.y + v.z * v.z), 2 * (v.x * v.y + v.z * r), 2 * (v.z * v.x - v.y * r), 0, 2 * (v.x * v.y - v.z * r), 1 - 2 * (v.z * v.z + v.x * v.x), 2 * (v.y * v.z + v.x * r), 0, 2 * (v.z * v.x + v.y * r), 2 * (v.y * v.z - v.x * r), 1 - 2 * (v.y * v.y + v.x * v.x), 0, 0, 0, 0, 1); } template<class T> inline Matrix33<T> operator * (const Matrix33<T> &M, const Quat<T> &q) { return M * q.toMatrix33(); } template<class T> inline Matrix33<T> operator * (const Quat<T> &q, const Matrix33<T> &M) { return q.toMatrix33() * M; } template<class T> std::ostream & operator << (std::ostream &o, const Quat<T> &q) { return o << "(" << q.r << " " << q.v.x << " " << q.v.y << " " << q.v.z << ")"; } template<class T> inline Quat<T> operator * (const Quat<T> &q1, const Quat<T> &q2) { return Quat<T> (q1.r * q2.r - (q1.v ^ q2.v), q1.r * q2.v + q1.v * q2.r + q1.v % q2.v); } template<class T> inline Quat<T> operator / (const Quat<T> &q1, const Quat<T> &q2) { return q1 * q2.inverse(); } template<class T> inline Quat<T> operator / (const Quat<T> &q, T t) { return Quat<T> (q.r / t, q.v / t); } template<class T> inline Quat<T> operator * (const Quat<T> &q, T t) { return Quat<T> (q.r * t, q.v * t); } template<class T> inline Quat<T> operator * (T t, const Quat<T> &q) { return Quat<T> (q.r * t, q.v * t); } template<class T> inline Quat<T> operator + (const Quat<T> &q1, const Quat<T> &q2) { return Quat<T> (q1.r + q2.r, q1.v + q2.v); } template<class T> inline Quat<T> operator - (const Quat<T> &q1, const Quat<T> &q2) { return Quat<T> (q1.r - q2.r, q1.v - q2.v); } template<class T> inline Quat<T> operator ~ (const Quat<T> &q) { return Quat<T> (q.r, -q.v); } template<class T> inline Quat<T> operator - (const Quat<T> &q) { return Quat<T> (-q.r, -q.v); } template<class T> inline Vec3<T> operator * (const Vec3<T> &v, const Quat<T> &q) { Vec3<T> a = q.v % v; Vec3<T> b = q.v % a; return v + T (2) * (q.r * a + b); } #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER #pragma warning(default:4244) #endif } // namespace Imath #endif