/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010,2014, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
//    Dachuan Zhao, dachuan@multicorewareinc.com
//    Yao Wang, bitwangyaoyao@gmail.com
//    Xiaopeng Fu, fuxiaopeng2222@163.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#define	BUFFER	64
#define	BUFFER2	BUFFER>>1
#ifndef WAVE_SIZE
#define WAVE_SIZE 1
#endif
#ifdef CPU

void reduce3(float val1, float val2, float val3,  __local float* smem1,  __local float* smem2,  __local float* smem3, int tid)
{
    smem1[tid] = val1;
    smem2[tid] = val2;
    smem3[tid] = val3;
    barrier(CLK_LOCAL_MEM_FENCE);

    for(int i = BUFFER2; i > 0; i >>= 1)
    {
        if(tid < i)
        {
            smem1[tid] += smem1[tid + i];
            smem2[tid] += smem2[tid + i];
            smem3[tid] += smem3[tid + i];
        }
        barrier(CLK_LOCAL_MEM_FENCE);
    }
}

void reduce2(float val1, float val2, volatile __local float* smem1, volatile __local float* smem2, int tid)
{
    smem1[tid] = val1;
    smem2[tid] = val2;
    barrier(CLK_LOCAL_MEM_FENCE);

    for(int i = BUFFER2; i > 0; i >>= 1)
    {
        if(tid < i)
        {
            smem1[tid] += smem1[tid + i];
            smem2[tid] += smem2[tid + i];
        }
        barrier(CLK_LOCAL_MEM_FENCE);
    }
}

void reduce1(float val1, volatile __local float* smem1, int tid)
{
    smem1[tid] = val1;
    barrier(CLK_LOCAL_MEM_FENCE);

    for(int i = BUFFER2; i > 0; i >>= 1)
    {
        if(tid < i)
        {
            smem1[tid] += smem1[tid + i];
        }
        barrier(CLK_LOCAL_MEM_FENCE);
    }
}
#else
void reduce3(float val1, float val2, float val3,
             __local volatile float* smem1, __local volatile float* smem2, __local volatile float* smem3, int tid)
{
    smem1[tid] = val1;
    smem2[tid] = val2;
    smem3[tid] = val3;
    barrier(CLK_LOCAL_MEM_FENCE);

    if (tid < 32)
    {
        smem1[tid] += smem1[tid + 32];
        smem2[tid] += smem2[tid + 32];
        smem3[tid] += smem3[tid + 32];
#if WAVE_SIZE < 32
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 16)
    {
#endif
        smem1[tid] += smem1[tid + 16];
        smem2[tid] += smem2[tid + 16];
        smem3[tid] += smem3[tid + 16];
#if WAVE_SIZE <16
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 8)
    {
#endif
        smem1[tid] += smem1[tid + 8];
        smem2[tid] += smem2[tid + 8];
        smem3[tid] += smem3[tid + 8];

        smem1[tid] += smem1[tid + 4];
        smem2[tid] += smem2[tid + 4];
        smem3[tid] += smem3[tid + 4];

        smem1[tid] += smem1[tid + 2];
        smem2[tid] += smem2[tid + 2];
        smem3[tid] += smem3[tid + 2];

        smem1[tid] += smem1[tid + 1];
        smem2[tid] += smem2[tid + 1];
        smem3[tid] += smem3[tid + 1];
    }
    barrier(CLK_LOCAL_MEM_FENCE);
}

void reduce2(float val1, float val2, __local volatile float* smem1, __local volatile float* smem2, int tid)
{
    smem1[tid] = val1;
    smem2[tid] = val2;
    barrier(CLK_LOCAL_MEM_FENCE);

    if (tid < 32)
    {
        smem1[tid] += smem1[tid + 32];
        smem2[tid] += smem2[tid + 32];
#if WAVE_SIZE < 32
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 16)
    {
#endif
        smem1[tid] += smem1[tid + 16];
        smem2[tid] += smem2[tid + 16];
#if WAVE_SIZE <16
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 8)
    {
#endif
        smem1[tid] += smem1[tid + 8];
        smem2[tid] += smem2[tid + 8];

        smem1[tid] += smem1[tid + 4];
        smem2[tid] += smem2[tid + 4];

        smem1[tid] += smem1[tid + 2];
        smem2[tid] += smem2[tid + 2];

        smem1[tid] += smem1[tid + 1];
        smem2[tid] += smem2[tid + 1];
    }
    barrier(CLK_LOCAL_MEM_FENCE);
}

void reduce1(float val1, __local volatile float* smem1, int tid)
{
    smem1[tid] = val1;
    barrier(CLK_LOCAL_MEM_FENCE);

    if (tid < 32)
    {
        smem1[tid] += smem1[tid + 32];
#if WAVE_SIZE < 32
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 16)
    {
#endif
        smem1[tid] += smem1[tid + 16];
#if WAVE_SIZE <16
    }
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 8)
    {
#endif
        smem1[tid] += smem1[tid + 8];
        smem1[tid] += smem1[tid + 4];
        smem1[tid] += smem1[tid + 2];
        smem1[tid] += smem1[tid + 1];
    }
    barrier(CLK_LOCAL_MEM_FENCE);
}
#endif

#define SCALE (1.0f / (1 << 20))
#define	THRESHOLD	0.01f

// Image read mode
__constant sampler_t sampler    = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_LINEAR;

void SetPatch(image2d_t I, float x, float y,
              float* Pch, float* Dx, float* Dy,
              float* A11, float* A12, float* A22)
{
    *Pch = read_imagef(I, sampler, (float2)(x, y)).x;

    float dIdx = 3.0f * read_imagef(I, sampler, (float2)(x + 1, y - 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x + 1, y)).x + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y + 1)).x -
                 (3.0f * read_imagef(I, sampler, (float2)(x - 1, y - 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x - 1, y)).x + 3.0f * read_imagef(I, sampler, (float2)(x - 1, y + 1)).x);

    float dIdy = 3.0f * read_imagef(I, sampler, (float2)(x - 1, y + 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x, y + 1)).x + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y + 1)).x -
                 (3.0f * read_imagef(I, sampler, (float2)(x - 1, y - 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x, y - 1)).x + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y - 1)).x);


    *Dx = dIdx;
    *Dy = dIdy;

    *A11 += dIdx * dIdx;
    *A12 += dIdx * dIdy;
    *A22 += dIdy * dIdy;
}

void GetPatch(image2d_t J, float x, float y,
              float* Pch, float* Dx, float* Dy,
              float* b1, float* b2)
{
    float J_val = read_imagef(J, sampler, (float2)(x, y)).x;
    float diff = (J_val - *Pch) * 32.0f;
    *b1 += diff**Dx;
    *b2 += diff**Dy;
}

void GetError(image2d_t J, const float x, const float y, const float* Pch, float* errval)
{
    float diff = read_imagef(J, sampler, (float2)(x,y)).x-*Pch;
    *errval += fabs(diff);
}

void SetPatch4(image2d_t I, const float x, const float y,
               float4* Pch, float4* Dx, float4* Dy,
               float* A11, float* A12, float* A22)
{
    *Pch = read_imagef(I, sampler, (float2)(x, y));

    float4 dIdx = 3.0f * read_imagef(I, sampler, (float2)(x + 1, y - 1)) + 10.0f * read_imagef(I, sampler, (float2)(x + 1, y)) + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y + 1)) -
                  (3.0f * read_imagef(I, sampler, (float2)(x - 1, y - 1)) + 10.0f * read_imagef(I, sampler, (float2)(x - 1, y)) + 3.0f * read_imagef(I, sampler, (float2)(x - 1, y + 1)));

    float4 dIdy = 3.0f * read_imagef(I, sampler, (float2)(x - 1, y + 1)) + 10.0f * read_imagef(I, sampler, (float2)(x, y + 1)) + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y + 1)) -
                  (3.0f * read_imagef(I, sampler, (float2)(x - 1, y - 1)) + 10.0f * read_imagef(I, sampler, (float2)(x, y - 1)) + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y - 1)));


    *Dx = dIdx;
    *Dy = dIdy;
    float4 sqIdx = dIdx * dIdx;
    *A11 += sqIdx.x + sqIdx.y + sqIdx.z;
    sqIdx = dIdx * dIdy;
    *A12 += sqIdx.x + sqIdx.y + sqIdx.z;
    sqIdx = dIdy * dIdy;
    *A22 += sqIdx.x + sqIdx.y + sqIdx.z;
}

void GetPatch4(image2d_t J, const float x, const float y,
               const float4* Pch, const float4* Dx, const float4* Dy,
               float* b1, float* b2)
{
    float4 J_val = read_imagef(J, sampler, (float2)(x, y));
    float4 diff = (J_val - *Pch) * 32.0f;
    float4 xdiff = diff* *Dx;
    *b1 += xdiff.x + xdiff.y + xdiff.z;
    xdiff = diff* *Dy;
    *b2 += xdiff.x + xdiff.y + xdiff.z;
}

void GetError4(image2d_t J, const float x, const float y, const float4* Pch, float* errval)
{
    float4 diff = read_imagef(J, sampler, (float2)(x,y))-*Pch;
    *errval += fabs(diff.x) + fabs(diff.y) + fabs(diff.z);
}

#define	GRIDSIZE	3
__kernel void lkSparse_C1_D5(image2d_t I, image2d_t J,
                             __global const float2* prevPts, int prevPtsStep, __global float2* nextPts, int nextPtsStep, __global uchar* status, __global float* err,
                             const int level, const int rows, const int cols, int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr)
{
    __local float smem1[BUFFER];
    __local float smem2[BUFFER];
    __local float smem3[BUFFER];

    unsigned int xid=get_local_id(0);
    unsigned int yid=get_local_id(1);
    unsigned int gid=get_group_id(0);
    unsigned int xsize=get_local_size(0);
    unsigned int ysize=get_local_size(1);
    int xBase, yBase, k;

    float2 c_halfWin = (float2)((c_winSize_x - 1)>>1, (c_winSize_y - 1)>>1);

    const int tid = mad24(yid, xsize, xid);

    float2 prevPt = prevPts[gid] / (float2)(1 << level);

    if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows)
    {
        if (tid == 0 && level == 0)
        {
            status[gid] = 0;
        }

        return;
    }
    prevPt -= c_halfWin;

    // extract the patch from the first image, compute covariation matrix of derivatives

    float A11 = 0;
    float A12 = 0;
    float A22 = 0;

    float I_patch[GRIDSIZE][GRIDSIZE];
    float dIdx_patch[GRIDSIZE][GRIDSIZE];
    float dIdy_patch[GRIDSIZE][GRIDSIZE];

    yBase=yid;
    {
        xBase=xid;
        SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                 &I_patch[0][0], &dIdx_patch[0][0], &dIdy_patch[0][0],
                 &A11, &A12, &A22);


        xBase+=xsize;
        SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                 &I_patch[0][1], &dIdx_patch[0][1], &dIdy_patch[0][1],
                 &A11, &A12, &A22);

        xBase+=xsize;
        if(xBase<c_winSize_x)
            SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                     &I_patch[0][2], &dIdx_patch[0][2], &dIdy_patch[0][2],
                     &A11, &A12, &A22);
    }
    yBase+=ysize;
    {
        xBase=xid;
        SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                 &I_patch[1][0], &dIdx_patch[1][0], &dIdy_patch[1][0],
                 &A11, &A12, &A22);


        xBase+=xsize;
        SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                 &I_patch[1][1], &dIdx_patch[1][1], &dIdy_patch[1][1],
                 &A11, &A12, &A22);

        xBase+=xsize;
        if(xBase<c_winSize_x)
            SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                     &I_patch[1][2], &dIdx_patch[1][2], &dIdy_patch[1][2],
                     &A11, &A12, &A22);
    }
    yBase+=ysize;
    if(yBase<c_winSize_y)
    {
        xBase=xid;
        SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                 &I_patch[2][0], &dIdx_patch[2][0], &dIdy_patch[2][0],
                 &A11, &A12, &A22);


        xBase+=xsize;
        SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                 &I_patch[2][1], &dIdx_patch[2][1], &dIdy_patch[2][1],
                 &A11, &A12, &A22);

        xBase+=xsize;
        if(xBase<c_winSize_x)
            SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                     &I_patch[2][2], &dIdx_patch[2][2], &dIdy_patch[2][2],
                     &A11, &A12, &A22);
    }

    reduce3(A11, A12, A22, smem1, smem2, smem3, tid);

    A11 = smem1[0];
    A12 = smem2[0];
    A22 = smem3[0];
    barrier(CLK_LOCAL_MEM_FENCE);

    float D = A11 * A22 - A12 * A12;

    if (D < 1.192092896e-07f)
    {
        if (tid == 0 && level == 0)
            status[gid] = 0;

        return;
    }

    A11 /= D;
    A12 /= D;
    A22 /= D;

    prevPt = nextPts[gid] * 2.0f - c_halfWin;

    for (k = 0; k < c_iters; ++k)
    {
        if (prevPt.x < -c_halfWin.x || prevPt.x >= cols || prevPt.y < -c_halfWin.y || prevPt.y >= rows)
        {
            if (tid == 0 && level == 0)
                status[gid] = 0;
            return;
        }

        float b1 = 0;
        float b2 = 0;

        yBase=yid;
        {
            xBase=xid;
            GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                     &I_patch[0][0], &dIdx_patch[0][0], &dIdy_patch[0][0],
                     &b1, &b2);


            xBase+=xsize;
            GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                     &I_patch[0][1], &dIdx_patch[0][1], &dIdy_patch[0][1],
                     &b1, &b2);

            xBase+=xsize;
            if(xBase<c_winSize_x)
                GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                         &I_patch[0][2], &dIdx_patch[0][2], &dIdy_patch[0][2],
                         &b1, &b2);
        }
        yBase+=ysize;
        {
            xBase=xid;
            GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                     &I_patch[1][0], &dIdx_patch[1][0], &dIdy_patch[1][0],
                     &b1, &b2);


            xBase+=xsize;
            GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                     &I_patch[1][1], &dIdx_patch[1][1], &dIdy_patch[1][1],
                     &b1, &b2);

            xBase+=xsize;
            if(xBase<c_winSize_x)
                GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                         &I_patch[1][2], &dIdx_patch[1][2], &dIdy_patch[1][2],
                         &b1, &b2);
        }
        yBase+=ysize;
        if(yBase<c_winSize_y)
        {
            xBase=xid;
            GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                     &I_patch[2][0], &dIdx_patch[2][0], &dIdy_patch[2][0],
                     &b1, &b2);


            xBase+=xsize;
            GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                     &I_patch[2][1], &dIdx_patch[2][1], &dIdy_patch[2][1],
                     &b1, &b2);

            xBase+=xsize;
            if(xBase<c_winSize_x)
                GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                         &I_patch[2][2], &dIdx_patch[2][2], &dIdy_patch[2][2],
                         &b1, &b2);
        }

        reduce2(b1, b2, smem1, smem2, tid);

        b1 = smem1[0];
        b2 = smem2[0];
        barrier(CLK_LOCAL_MEM_FENCE);

        float2 delta;
        delta.x = A12 * b2 - A22 * b1;
        delta.y = A12 * b1 - A11 * b2;

        prevPt += delta;

        if (fabs(delta.x) < THRESHOLD && fabs(delta.y) < THRESHOLD)
            break;
    }

    D = 0.0f;
    if (calcErr)
    {
        yBase=yid;
        {
            xBase=xid;
            GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                     &I_patch[0][0], &D);


            xBase+=xsize;
            GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                     &I_patch[0][1], &D);

            xBase+=xsize;
            if(xBase<c_winSize_x)
                GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                         &I_patch[0][2], &D);
        }
        yBase+=ysize;
        {
            xBase=xid;
            GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                     &I_patch[1][0], &D);


            xBase+=xsize;
            GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                     &I_patch[1][1], &D);

            xBase+=xsize;
            if(xBase<c_winSize_x)
                GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                         &I_patch[1][2], &D);
        }
        yBase+=ysize;
        if(yBase<c_winSize_y)
        {
            xBase=xid;
            GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                     &I_patch[2][0], &D);


            xBase+=xsize;
            GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                     &I_patch[2][1], &D);

            xBase+=xsize;
            if(xBase<c_winSize_x)
                GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
                         &I_patch[2][2], &D);
        }

        reduce1(D, smem1, tid);
    }

    if (tid == 0)
    {
        prevPt += c_halfWin;

        nextPts[gid] = prevPt;

        if (calcErr)
            err[gid] = smem1[0] / (float)(c_winSize_x * c_winSize_y);
    }
}


__kernel void lkSparse_C4_D5(image2d_t I, image2d_t J,
                             __global const float2* prevPts, int prevPtsStep, __global float2* nextPts, int nextPtsStep, __global uchar* status, __global float* err,
                             const int level, const int rows, const int cols, int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr)
{
    __local float smem1[BUFFER];
    __local float smem2[BUFFER];
    __local float smem3[BUFFER];

    unsigned int xid=get_local_id(0);
    unsigned int yid=get_local_id(1);
    unsigned int gid=get_group_id(0);
    unsigned int xsize=get_local_size(0);
    unsigned int ysize=get_local_size(1);
    int xBase, yBase, k;

    float2 c_halfWin = (float2)((c_winSize_x - 1)>>1, (c_winSize_y - 1)>>1);

    const int tid = mad24(yid, xsize, xid);

    float2 nextPt = prevPts[gid]/(float2)(1<<level);

    if (nextPt.x < 0 || nextPt.x >= cols || nextPt.y < 0 || nextPt.y >= rows)
    {
        if (tid == 0 && level == 0)
        {
            status[gid] = 0;
        }

        return;
    }

    nextPt -= c_halfWin;

    // extract the patch from the first image, compute covariation matrix of derivatives

    float A11 = 0.0f;
    float A12 = 0.0f;
    float A22 = 0.0f;

    float4 I_patch[8];
    float4 dIdx_patch[8];
    float4 dIdy_patch[8];
    float4 I_add,Dx_add,Dy_add;

    yBase=yid;
    {
        xBase=xid;
        SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                  &I_patch[0], &dIdx_patch[0], &dIdy_patch[0],
                  &A11, &A12, &A22);


        xBase+=xsize;
        SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                  &I_patch[1], &dIdx_patch[1], &dIdy_patch[1],
                  &A11, &A12, &A22);

        xBase+=xsize;
        if(xBase<c_winSize_x)
            SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                      &I_patch[2], &dIdx_patch[2], &dIdy_patch[2],
                      &A11, &A12, &A22);

    }
    yBase+=ysize;
    {
        xBase=xid;
        SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                  &I_patch[3], &dIdx_patch[3], &dIdy_patch[3],
                  &A11, &A12, &A22);


        xBase+=xsize;
        SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                  &I_patch[4], &dIdx_patch[4], &dIdy_patch[4],
                  &A11, &A12, &A22);

        xBase+=xsize;
        if(xBase<c_winSize_x)
            SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                      &I_patch[5], &dIdx_patch[5], &dIdy_patch[5],
                      &A11, &A12, &A22);
    }
    yBase+=ysize;
    if(yBase<c_winSize_y)
    {
        xBase=xid;
        SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                  &I_patch[6], &dIdx_patch[6], &dIdy_patch[6],
                  &A11, &A12, &A22);


        xBase+=xsize;
        SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                  &I_patch[7], &dIdx_patch[7], &dIdy_patch[7],
                  &A11, &A12, &A22);

        xBase+=xsize;
        if(xBase<c_winSize_x)
            SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                      &I_add, &Dx_add, &Dy_add,
                      &A11, &A12, &A22);
    }

    reduce3(A11, A12, A22, smem1, smem2, smem3, tid);

    A11 = smem1[0];
    A12 = smem2[0];
    A22 = smem3[0];
    barrier(CLK_LOCAL_MEM_FENCE);

    float D = A11 * A22 - A12 * A12;

    if (D < 1.192092896e-07f)
    {
        if (tid == 0 && level == 0)
            status[gid] = 0;

        return;
    }

    A11 /= D;
    A12 /= D;
    A22 /= D;

    nextPt = nextPts[gid] * 2.0f - c_halfWin;

    for (k = 0; k < c_iters; ++k)
    {
        if (nextPt.x < -c_halfWin.x || nextPt.x >= cols || nextPt.y < -c_halfWin.y || nextPt.y >= rows)
        {
            if (tid == 0 && level == 0)
                status[gid] = 0;
            return;
        }

        float b1 = 0;
        float b2 = 0;

        yBase=yid;
        {
            xBase=xid;
            GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                      &I_patch[0], &dIdx_patch[0], &dIdy_patch[0],
                      &b1, &b2);


            xBase+=xsize;
            GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                      &I_patch[1], &dIdx_patch[1], &dIdy_patch[1],
                      &b1, &b2);

            xBase+=xsize;
            if(xBase<c_winSize_x)
                GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                          &I_patch[2], &dIdx_patch[2], &dIdy_patch[2],
                          &b1, &b2);
        }
        yBase+=ysize;
        {
            xBase=xid;
            GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                      &I_patch[3], &dIdx_patch[3], &dIdy_patch[3],
                      &b1, &b2);


            xBase+=xsize;
            GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                      &I_patch[4], &dIdx_patch[4], &dIdy_patch[4],
                      &b1, &b2);

            xBase+=xsize;
            if(xBase<c_winSize_x)
                GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                          &I_patch[5], &dIdx_patch[5], &dIdy_patch[5],
                          &b1, &b2);
        }
        yBase+=ysize;
        if(yBase<c_winSize_y)
        {
            xBase=xid;
            GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                      &I_patch[6], &dIdx_patch[6], &dIdy_patch[6],
                      &b1, &b2);


            xBase+=xsize;
            GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                      &I_patch[7], &dIdx_patch[7], &dIdy_patch[7],
                      &b1, &b2);

            xBase+=xsize;
            if(xBase<c_winSize_x)
                GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                          &I_add, &Dx_add, &Dy_add,
                          &b1, &b2);
        }

        reduce2(b1, b2, smem1, smem2, tid);

        b1 = smem1[0];
        b2 = smem2[0];
        barrier(CLK_LOCAL_MEM_FENCE);

        float2 delta;
        delta.x = A12 * b2 - A22 * b1;
        delta.y = A12 * b1 - A11 * b2;

        nextPt +=delta;

        if (fabs(delta.x) < THRESHOLD && fabs(delta.y) < THRESHOLD)
            break;
    }

    D = 0.0f;
    if (calcErr)
    {
        yBase=yid;
        {
            xBase=xid;
            GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                      &I_patch[0], &D);


            xBase+=xsize;
            GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                      &I_patch[1], &D);

            xBase+=xsize;
            if(xBase<c_winSize_x)
                GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                          &I_patch[2], &D);
        }
        yBase+=ysize;
        {
            xBase=xid;
            GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                      &I_patch[3], &D);


            xBase+=xsize;
            GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                      &I_patch[4], &D);

            xBase+=xsize;
            if(xBase<c_winSize_x)
                GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                          &I_patch[5], &D);
        }
        yBase+=ysize;
        if(yBase<c_winSize_y)
        {
            xBase=xid;
            GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                      &I_patch[6], &D);


            xBase+=xsize;
            GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                      &I_patch[7], &D);

            xBase+=xsize;
            if(xBase<c_winSize_x)
                GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
                          &I_add, &D);
        }

        reduce1(D, smem1, tid);
    }

    if (tid == 0)
    {
        nextPt += c_halfWin;
        nextPts[gid] = nextPt;

        if (calcErr)
            err[gid] = smem1[0] / (float)(3 * c_winSize_x * c_winSize_y);
    }
}

__kernel void lkDense_C1_D0(image2d_t I, image2d_t J, __global float* u, int uStep, __global float* v, int vStep, __global const float* prevU, int prevUStep, __global const float* prevV, int prevVStep,
                            const int rows, const int cols, /*__global float* err, int errStep, int cn,*/ int c_winSize_x, int c_winSize_y, int c_iters, char calcErr)
{
    int c_halfWin_x = (c_winSize_x - 1) / 2;
    int c_halfWin_y = (c_winSize_y - 1) / 2;

    const int patchWidth  = get_local_size(0) + 2 * c_halfWin_x;
    const int patchHeight = get_local_size(1) + 2 * c_halfWin_y;

    __local int smem[8192];

    __local int* I_patch = smem;
    __local int* dIdx_patch = I_patch + patchWidth * patchHeight;
    __local int* dIdy_patch = dIdx_patch + patchWidth * patchHeight;

    const int xBase = get_group_id(0) * get_local_size(0);
    const int yBase = get_group_id(1) * get_local_size(1);

    sampler_t sampleri    = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;

    for (int i = get_local_id(1); i < patchHeight; i += get_local_size(1))
    {
        for (int j = get_local_id(0); j < patchWidth; j += get_local_size(0))
        {
            float x = xBase - c_halfWin_x + j + 0.5f;
            float y = yBase - c_halfWin_y + i + 0.5f;

            I_patch[i * patchWidth + j] = read_imagei(I, sampleri, (float2)(x, y)).x;

            // Sharr Deriv

            dIdx_patch[i * patchWidth + j] = 3 * read_imagei(I, sampleri, (float2)(x+1, y-1)).x + 10 * read_imagei(I, sampleri, (float2)(x+1, y)).x + 3 * read_imagei(I, sampleri, (float2)(x+1, y+1)).x -
                                             (3 * read_imagei(I, sampleri, (float2)(x-1, y-1)).x + 10 * read_imagei(I, sampleri, (float2)(x-1, y)).x + 3 * read_imagei(I, sampleri, (float2)(x-1, y+1)).x);

            dIdy_patch[i * patchWidth + j] = 3 * read_imagei(I, sampleri, (float2)(x-1, y+1)).x + 10 * read_imagei(I, sampleri, (float2)(x, y+1)).x + 3 * read_imagei(I, sampleri, (float2)(x+1, y+1)).x -
                                             (3 * read_imagei(I, sampleri, (float2)(x-1, y-1)).x + 10 * read_imagei(I, sampleri, (float2)(x, y-1)).x + 3 * read_imagei(I, sampleri, (float2)(x+1, y-1)).x);
        }
    }
    barrier(CLK_LOCAL_MEM_FENCE);

    // extract the patch from the first image, compute covariation matrix of derivatives

    const int x = get_global_id(0);
    const int y = get_global_id(1);

    if (x >= cols || y >= rows)
        return;

    int A11i = 0;
    int A12i = 0;
    int A22i = 0;

    for (int i = 0; i < c_winSize_y; ++i)
    {
        for (int j = 0; j < c_winSize_x; ++j)
        {
            int dIdx = dIdx_patch[(get_local_id(1) + i) * patchWidth + (get_local_id(0) + j)];
            int dIdy = dIdy_patch[(get_local_id(1) + i) * patchWidth + (get_local_id(0) + j)];

            A11i += dIdx * dIdx;
            A12i += dIdx * dIdy;
            A22i += dIdy * dIdy;
        }
    }

    float A11 = A11i;
    float A12 = A12i;
    float A22 = A22i;

    float D = A11 * A22 - A12 * A12;

    //if (calcErr && GET_MIN_EIGENVALS)
    //    (err + y * errStep)[x] = minEig;

    if (D < 1.192092896e-07f)
    {
        //if (calcErr)
        //    err(y, x) = 3.402823466e+38f;

        return;
    }

    D = 1.f / D;

    A11 *= D;
    A12 *= D;
    A22 *= D;

    float2 nextPt;
    nextPt.x = x + prevU[y/2 * prevUStep / 4 + x/2] * 2.0f;
    nextPt.y = y + prevV[y/2 * prevVStep / 4 + x/2] * 2.0f;

    for (int k = 0; k < c_iters; ++k)
    {
        if (nextPt.x < 0 || nextPt.x >= cols || nextPt.y < 0 || nextPt.y >= rows)
        {
            //if (calcErr)
            //    err(y, x) = 3.402823466e+38f;

            return;
        }

        int b1 = 0;
        int b2 = 0;

        for (int i = 0; i < c_winSize_y; ++i)
        {
            for (int j = 0; j < c_winSize_x; ++j)
            {
                int iI = I_patch[(get_local_id(1) + i) * patchWidth + get_local_id(0) + j];
                int iJ = read_imagei(J, sampler, (float2)(nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f)).x;

                int diff = (iJ - iI) * 32;

                int dIdx = dIdx_patch[(get_local_id(1) + i) * patchWidth + (get_local_id(0) + j)];
                int dIdy = dIdy_patch[(get_local_id(1) + i) * patchWidth + (get_local_id(0) + j)];

                b1 += diff * dIdx;
                b2 += diff * dIdy;
            }
        }

        float2 delta;
        delta.x = A12 * b2 - A22 * b1;
        delta.y = A12 * b1 - A11 * b2;

        nextPt.x += delta.x;
        nextPt.y += delta.y;

        if (fabs(delta.x) < 0.01f && fabs(delta.y) < 0.01f)
            break;
    }

    u[y * uStep / 4 + x] = nextPt.x - x;
    v[y * vStep / 4 + x] = nextPt.y - y;

    if (calcErr)
    {
        int errval = 0;

        for (int i = 0; i < c_winSize_y; ++i)
        {
            for (int j = 0; j < c_winSize_x; ++j)
            {
                int iI = I_patch[(get_local_id(1) + i) * patchWidth + get_local_id(0) + j];
                int iJ = read_imagei(J, sampler, (float2)(nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f)).x;

                errval += abs(iJ - iI);
            }
        }

        //err[y * errStep / 4 + x] = static_cast<float>(errval) / (c_winSize_x * c_winSize_y);
    }
}