/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" /****************************************************************************************\ * Watershed * \****************************************************************************************/ typedef struct CvWSNode { struct CvWSNode* next; int mask_ofs; int img_ofs; } CvWSNode; typedef struct CvWSQueue { CvWSNode* first; CvWSNode* last; } CvWSQueue; static CvWSNode* icvAllocWSNodes( CvMemStorage* storage ) { CvWSNode* n = 0; int i, count = (storage->block_size - sizeof(CvMemBlock))/sizeof(*n) - 1; n = (CvWSNode*)cvMemStorageAlloc( storage, count*sizeof(*n) ); for( i = 0; i < count-1; i++ ) n[i].next = n + i + 1; n[count-1].next = 0; return n; } CV_IMPL void cvWatershed( const CvArr* srcarr, CvArr* dstarr ) { const int IN_QUEUE = -2; const int WSHED = -1; const int NQ = 256; cv::Ptr<CvMemStorage> storage; CvMat sstub, *src; CvMat dstub, *dst; CvSize size; CvWSNode* free_node = 0, *node; CvWSQueue q[NQ]; int active_queue; int i, j; int db, dg, dr; int* mask; uchar* img; int mstep, istep; int subs_tab[513]; // MAX(a,b) = b + MAX(a-b,0) #define ws_max(a,b) ((b) + subs_tab[(a)-(b)+NQ]) // MIN(a,b) = a - MAX(a-b,0) #define ws_min(a,b) ((a) - subs_tab[(a)-(b)+NQ]) #define ws_push(idx,mofs,iofs) \ { \ if( !free_node ) \ free_node = icvAllocWSNodes( storage );\ node = free_node; \ free_node = free_node->next;\ node->next = 0; \ node->mask_ofs = mofs; \ node->img_ofs = iofs; \ if( q[idx].last ) \ q[idx].last->next=node; \ else \ q[idx].first = node; \ q[idx].last = node; \ } #define ws_pop(idx,mofs,iofs) \ { \ node = q[idx].first; \ q[idx].first = node->next; \ if( !node->next ) \ q[idx].last = 0; \ node->next = free_node; \ free_node = node; \ mofs = node->mask_ofs; \ iofs = node->img_ofs; \ } #define c_diff(ptr1,ptr2,diff) \ { \ db = abs((ptr1)[0] - (ptr2)[0]);\ dg = abs((ptr1)[1] - (ptr2)[1]);\ dr = abs((ptr1)[2] - (ptr2)[2]);\ diff = ws_max(db,dg); \ diff = ws_max(diff,dr); \ assert( 0 <= diff && diff <= 255 ); \ } src = cvGetMat( srcarr, &sstub ); dst = cvGetMat( dstarr, &dstub ); if( CV_MAT_TYPE(src->type) != CV_8UC3 ) CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 3-channel input images are supported" ); if( CV_MAT_TYPE(dst->type) != CV_32SC1 ) CV_Error( CV_StsUnsupportedFormat, "Only 32-bit, 1-channel output images are supported" ); if( !CV_ARE_SIZES_EQ( src, dst )) CV_Error( CV_StsUnmatchedSizes, "The input and output images must have the same size" ); size = cvGetMatSize(src); storage = cvCreateMemStorage(); istep = src->step; img = src->data.ptr; mstep = dst->step / sizeof(mask[0]); mask = dst->data.i; memset( q, 0, NQ*sizeof(q[0]) ); for( i = 0; i < 256; i++ ) subs_tab[i] = 0; for( i = 256; i <= 512; i++ ) subs_tab[i] = i - 256; // draw a pixel-wide border of dummy "watershed" (i.e. boundary) pixels for( j = 0; j < size.width; j++ ) mask[j] = mask[j + mstep*(size.height-1)] = WSHED; // initial phase: put all the neighbor pixels of each marker to the ordered queue - // determine the initial boundaries of the basins for( i = 1; i < size.height-1; i++ ) { img += istep; mask += mstep; mask[0] = mask[size.width-1] = WSHED; for( j = 1; j < size.width-1; j++ ) { int* m = mask + j; if( m[0] < 0 ) m[0] = 0; if( m[0] == 0 && (m[-1] > 0 || m[1] > 0 || m[-mstep] > 0 || m[mstep] > 0) ) { uchar* ptr = img + j*3; int idx = 256, t; if( m[-1] > 0 ) c_diff( ptr, ptr - 3, idx ); if( m[1] > 0 ) { c_diff( ptr, ptr + 3, t ); idx = ws_min( idx, t ); } if( m[-mstep] > 0 ) { c_diff( ptr, ptr - istep, t ); idx = ws_min( idx, t ); } if( m[mstep] > 0 ) { c_diff( ptr, ptr + istep, t ); idx = ws_min( idx, t ); } assert( 0 <= idx && idx <= 255 ); ws_push( idx, i*mstep + j, i*istep + j*3 ); m[0] = IN_QUEUE; } } } // find the first non-empty queue for( i = 0; i < NQ; i++ ) if( q[i].first ) break; // if there is no markers, exit immediately if( i == NQ ) return; active_queue = i; img = src->data.ptr; mask = dst->data.i; // recursively fill the basins for(;;) { int mofs, iofs; int lab = 0, t; int* m; uchar* ptr; if( q[active_queue].first == 0 ) { for( i = active_queue+1; i < NQ; i++ ) if( q[i].first ) break; if( i == NQ ) break; active_queue = i; } ws_pop( active_queue, mofs, iofs ); m = mask + mofs; ptr = img + iofs; t = m[-1]; if( t > 0 ) lab = t; t = m[1]; if( t > 0 ) { if( lab == 0 ) lab = t; else if( t != lab ) lab = WSHED; } t = m[-mstep]; if( t > 0 ) { if( lab == 0 ) lab = t; else if( t != lab ) lab = WSHED; } t = m[mstep]; if( t > 0 ) { if( lab == 0 ) lab = t; else if( t != lab ) lab = WSHED; } assert( lab != 0 ); m[0] = lab; if( lab == WSHED ) continue; if( m[-1] == 0 ) { c_diff( ptr, ptr - 3, t ); ws_push( t, mofs - 1, iofs - 3 ); active_queue = ws_min( active_queue, t ); m[-1] = IN_QUEUE; } if( m[1] == 0 ) { c_diff( ptr, ptr + 3, t ); ws_push( t, mofs + 1, iofs + 3 ); active_queue = ws_min( active_queue, t ); m[1] = IN_QUEUE; } if( m[-mstep] == 0 ) { c_diff( ptr, ptr - istep, t ); ws_push( t, mofs - mstep, iofs - istep ); active_queue = ws_min( active_queue, t ); m[-mstep] = IN_QUEUE; } if( m[mstep] == 0 ) { c_diff( ptr, ptr + istep, t ); ws_push( t, mofs + mstep, iofs + istep ); active_queue = ws_min( active_queue, t ); m[mstep] = IN_QUEUE; } } } void cv::watershed( InputArray _src, InputOutputArray markers ) { Mat src = _src.getMat(); CvMat c_src = _src.getMat(), c_markers = markers.getMat(); cvWatershed( &c_src, &c_markers ); } /****************************************************************************************\ * Meanshift * \****************************************************************************************/ CV_IMPL void cvPyrMeanShiftFiltering( const CvArr* srcarr, CvArr* dstarr, double sp0, double sr, int max_level, CvTermCriteria termcrit ) { const int cn = 3; const int MAX_LEVELS = 8; if( (unsigned)max_level > (unsigned)MAX_LEVELS ) CV_Error( CV_StsOutOfRange, "The number of pyramid levels is too large or negative" ); std::vector<cv::Mat> src_pyramid(max_level+1); std::vector<cv::Mat> dst_pyramid(max_level+1); cv::Mat mask0; int i, j, level; //uchar* submask = 0; #define cdiff(ofs0) (tab[c0-dptr[ofs0]+255] + \ tab[c1-dptr[(ofs0)+1]+255] + tab[c2-dptr[(ofs0)+2]+255] >= isr22) double sr2 = sr * sr; int isr2 = cvRound(sr2), isr22 = MAX(isr2,16); int tab[768]; cv::Mat src0 = cv::cvarrToMat(srcarr); cv::Mat dst0 = cv::cvarrToMat(dstarr); if( src0.type() != CV_8UC3 ) CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 3-channel images are supported" ); if( src0.type() != dst0.type() ) CV_Error( CV_StsUnmatchedFormats, "The input and output images must have the same type" ); if( src0.size() != dst0.size() ) CV_Error( CV_StsUnmatchedSizes, "The input and output images must have the same size" ); if( !(termcrit.type & CV_TERMCRIT_ITER) ) termcrit.max_iter = 5; termcrit.max_iter = MAX(termcrit.max_iter,1); termcrit.max_iter = MIN(termcrit.max_iter,100); if( !(termcrit.type & CV_TERMCRIT_EPS) ) termcrit.epsilon = 1.f; termcrit.epsilon = MAX(termcrit.epsilon, 0.f); for( i = 0; i < 768; i++ ) tab[i] = (i - 255)*(i - 255); // 1. construct pyramid src_pyramid[0] = src0; dst_pyramid[0] = dst0; for( level = 1; level <= max_level; level++ ) { src_pyramid[level].create( (src_pyramid[level-1].rows+1)/2, (src_pyramid[level-1].cols+1)/2, src_pyramid[level-1].type() ); dst_pyramid[level].create( src_pyramid[level].rows, src_pyramid[level].cols, src_pyramid[level].type() ); cv::pyrDown( src_pyramid[level-1], src_pyramid[level], src_pyramid[level].size() ); //CV_CALL( cvResize( src_pyramid[level-1], src_pyramid[level], CV_INTER_AREA )); } mask0.create(src0.rows, src0.cols, CV_8UC1); //CV_CALL( submask = (uchar*)cvAlloc( (sp+2)*(sp+2) )); // 2. apply meanshift, starting from the pyramid top (i.e. the smallest layer) for( level = max_level; level >= 0; level-- ) { cv::Mat src = src_pyramid[level]; cv::Size size = src.size(); uchar* sptr = src.data; int sstep = (int)src.step; uchar* mask = 0; int mstep = 0; uchar* dptr; int dstep; float sp = (float)(sp0 / (1 << level)); sp = MAX( sp, 1 ); if( level < max_level ) { cv::Size size1 = dst_pyramid[level+1].size(); cv::Mat m( size.height, size.width, CV_8UC1, mask0.data ); dstep = (int)dst_pyramid[level+1].step; dptr = dst_pyramid[level+1].data + dstep + cn; mstep = (int)m.step; mask = m.data + mstep; //cvResize( dst_pyramid[level+1], dst_pyramid[level], CV_INTER_CUBIC ); cv::pyrUp( dst_pyramid[level+1], dst_pyramid[level], dst_pyramid[level].size() ); m.setTo(cv::Scalar::all(0)); for( i = 1; i < size1.height-1; i++, dptr += dstep - (size1.width-2)*3, mask += mstep*2 ) { for( j = 1; j < size1.width-1; j++, dptr += cn ) { int c0 = dptr[0], c1 = dptr[1], c2 = dptr[2]; mask[j*2 - 1] = cdiff(-3) || cdiff(3) || cdiff(-dstep-3) || cdiff(-dstep) || cdiff(-dstep+3) || cdiff(dstep-3) || cdiff(dstep) || cdiff(dstep+3); } } cv::dilate( m, m, cv::Mat() ); mask = m.data; } dptr = dst_pyramid[level].data; dstep = (int)dst_pyramid[level].step; for( i = 0; i < size.height; i++, sptr += sstep - size.width*3, dptr += dstep - size.width*3, mask += mstep ) { for( j = 0; j < size.width; j++, sptr += 3, dptr += 3 ) { int x0 = j, y0 = i, x1, y1, iter; int c0, c1, c2; if( mask && !mask[j] ) continue; c0 = sptr[0], c1 = sptr[1], c2 = sptr[2]; // iterate meanshift procedure for( iter = 0; iter < termcrit.max_iter; iter++ ) { uchar* ptr; int x, y, count = 0; int minx, miny, maxx, maxy; int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0; double icount; int stop_flag; //mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp) minx = cvRound(x0 - sp); minx = MAX(minx, 0); miny = cvRound(y0 - sp); miny = MAX(miny, 0); maxx = cvRound(x0 + sp); maxx = MIN(maxx, size.width-1); maxy = cvRound(y0 + sp); maxy = MIN(maxy, size.height-1); ptr = sptr + (miny - i)*sstep + (minx - j)*3; for( y = miny; y <= maxy; y++, ptr += sstep - (maxx-minx+1)*3 ) { int row_count = 0; x = minx; #if CV_ENABLE_UNROLLED for( ; x + 3 <= maxx; x += 4, ptr += 12 ) { int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2]; if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 ) { s0 += t0; s1 += t1; s2 += t2; sx += x; row_count++; } t0 = ptr[3], t1 = ptr[4], t2 = ptr[5]; if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 ) { s0 += t0; s1 += t1; s2 += t2; sx += x+1; row_count++; } t0 = ptr[6], t1 = ptr[7], t2 = ptr[8]; if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 ) { s0 += t0; s1 += t1; s2 += t2; sx += x+2; row_count++; } t0 = ptr[9], t1 = ptr[10], t2 = ptr[11]; if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 ) { s0 += t0; s1 += t1; s2 += t2; sx += x+3; row_count++; } } #endif for( ; x <= maxx; x++, ptr += 3 ) { int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2]; if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 ) { s0 += t0; s1 += t1; s2 += t2; sx += x; row_count++; } } count += row_count; sy += y*row_count; } if( count == 0 ) break; icount = 1./count; x1 = cvRound(sx*icount); y1 = cvRound(sy*icount); s0 = cvRound(s0*icount); s1 = cvRound(s1*icount); s2 = cvRound(s2*icount); stop_flag = (x0 == x1 && y0 == y1) || abs(x1-x0) + abs(y1-y0) + tab[s0 - c0 + 255] + tab[s1 - c1 + 255] + tab[s2 - c2 + 255] <= termcrit.epsilon; x0 = x1; y0 = y1; c0 = s0; c1 = s1; c2 = s2; if( stop_flag ) break; } dptr[0] = (uchar)c0; dptr[1] = (uchar)c1; dptr[2] = (uchar)c2; } } } } void cv::pyrMeanShiftFiltering( InputArray _src, OutputArray _dst, double sp, double sr, int maxLevel, TermCriteria termcrit ) { Mat src = _src.getMat(); if( src.empty() ) return; _dst.create( src.size(), src.type() ); CvMat c_src = src, c_dst = _dst.getMat(); cvPyrMeanShiftFiltering( &c_src, &c_dst, sp, sr, maxLevel, termcrit ); }